

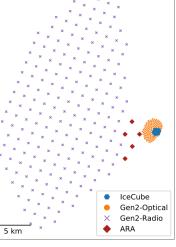
Snowmass Instrumentation Frontier IF10/Radio Amy and Albrecht

Instrumentation Frontier IF10

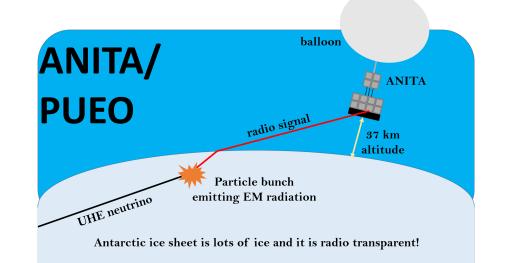
• These were the LOIs submitted to IF that involved radio frequencies directly or tangentially:

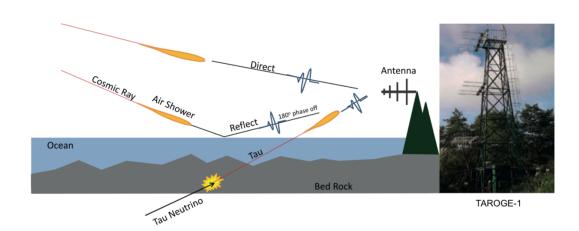
File	Title	contact	new co	IF	IF01	IF02	IF03	IF04	IF05	IF06	IF07	IF08	IF09
TOTALS			0	0	0	0	0	0	0	0	0	0	0
IF1-CF2-003.pdf	Tunable plasma haloscope	katherine.dunne@fysik.su.	:		x								
IF1_IF0-CF2_CF0-146.pdf	Spin-triplet superconductivity - a new foundation for magnetically resist	huang44@llnl.gov			х								
IF1_IF0-CF2_CF0-156.pdf	Resonant halo axion detectors for the mass range 16-41 ueV	chelsb89@uw.edu			х								
IF1_IF0-CF2_CF0-193.pdf	Radio frequency quantum upconverters: precision metrology for fundation	kuenstns@stanford.edu			х								
IF1_IF0-CF3_CF0_Rosen-167.pdf	Tunable quality factor resonators for high energy applications	rosen10@llnl.gov			х								
IF1_IF0-NF10_NF0-CF1_CF2_Golwala-0	Phonon-mediated KID-based detectors for low-mass dark matter dete	golwala@caltech.edu			х								
IF1_IF2-047.pdf	Warm electronics readout of superconducting microwave resonators	eyy@stanford.edu			х	х							
IF1_IF2-177.pdf	Superconducting detector facility for HEP science	cecil@anl.gov			х	х							x
IF1_IF2-AF5_AF7_Nanni-162.pdf	Transduction for new regimes in quantum sensing	tony.heinz@stanford.edu			х	х							
IF1_IF2-CF2_CF0_Ankur_Agrawal-149.p	Superconducting qubit advantage for dark matter (SQuAD)	ankuragrawal@uchicago.e			х	х							
IF1_IF9-CF2_CF0_Gianpaolo_Carosi-13	Topological microwave circulators for HEP applications	qu2@llnl.gov			х								х
IF2_IF0_Erik_Shirokoff-187.pdf	Kinetic inductance detectors for long-wavelength photon detection	shiro@uchicago.edu				х							
IF2_IF10-NF10_NF0-UF1_UF3-144.pdf	IceCube-Gen2: the next generation wide band neutrino observatory	karle@icecube.wisc.edu				х							
IF2_IF6_Yu-181.pdf	The microwave SQUID multiplexer for cosmology and cryogenic partic	cyndiayu@stanford.edu				х				х			
IF4_IF0-NF5_NF0_Noah_Oblath-046.pdf	DAQ system for a large-volume CRES experiment	noah.oblath@pnnl.gov						х					
IF6_IF2-EF6_EF0_Peter_Gorham-039.pd	Calorimetric picosecond timing planes for future 100 TeV-scale collide	gorham@hawaii.edu				х				х			
IF7_IF9-CF2_CF4_Austin_Minnich-117.p	Towards quantum-limited transistor microwave amplifiers	aminnich@caltech.edu									x		x

 Many were cross-listed with other things, especially IF1(quantum sensors), IF2 (photons)²


Radio detection of neutrinos

One submitted among these experiments


File	Title	contact	new co	IF	IF01	IF02	IF03	IF04	IF05	IF06	IF07	IF08	IF09
TOTALS			0	0	0	0	0	0	0	0	0	0	0
IF1-CF2-003.pdf	Tunable plasma haloscope	katherine.dunne@fysik.su.			x								
IF1_IF0-CF2_CF0-146.pdf	Spin-triplet superconductivity - a new foundation for magnetically resist	huang44@llnl.gov			х								
IF1_IF0-CF2_CF0-156.pdf	Resonant halo axion detectors for the mass range 16-41 ueV	chelsb89@uw.edu			х								
IF1_IF0-CF2_CF0-193.pdf	Radio frequency quantum upconverters: precision metrology for fundation	kuenstns@stanford.edu			х								
IF1_IF0-CF3_CF0_Rosen-167.pdf	Tunable quality factor resonators for high energy applications	rosen10@llnl.gov			х								
IF1_IF0-NF10_NF0-CF1_CF2_Golwala-0	Phonon-mediated KID-based detectors for low-mass dark matter dete	golwala@caltech.edu			х								
IF1_IF2-047.pdf	Warm electronics readout of superconducting microwave resonators	eyy@stanford.edu			х	х							
IF1_IF2-177.pdf	Superconducting detector facility for HEP science	cecil@anl.gov			х	х							х
IF1_IF2-AF5_AF7_Nanni-162.pdf	Transduction for new regimes in quantum sensing	tony.heinz@stanford.edu			х	х							
IF1_IF2-CF2_CF0_Ankur_Agrawal-149.p	Superconducting qubit advantage for dark matter (SQuAD)	ankuragrawal@uchicago.e			х	х							
IF1_IF9-CF2_CF0_Gianpaolo_Carosi-13	Topological microwave circulators for HEP applications	qu2@llnl.gov			х								х
IF2_IF0_Frik_Shirokoff-187 ndf	Kinetic inductance detectors for long-wavelength photon detection	shiro@uchicago.edu				x							
IF2_IF10-NF10_NF0-UF1_UF3-144.pdf	IceCube-Gen2: the next generation wide band neutrino observatory	karle@icecube.wisc.edu				х							
IF2_IF6_Yu-181.pdf	The microwave SQUID multiplexer for cosmology and cryogenic parti	cyndiayu@stanford.edu				х				х			
IF4_IF0-NF5_NF0_Noah_Oblath-046.pdf	DAQ system for a large-volume CRES experiment	noah.oblath@pnnl.gov						x					
IF6_IF2-EF6_EF0_Peter_Gorham-039.pd	Calorimetric picosecond timing planes for future 100 TeV-scale collide	gorham@hawaii.edu				х				x			
IF7_IF9-CF2_CF4_Austin_Minnich-117.p	Towards quantum-limited transistor microwave amplifiers	aminnich@caltech.edu									x		x


Radio Neutrino Projects

RX

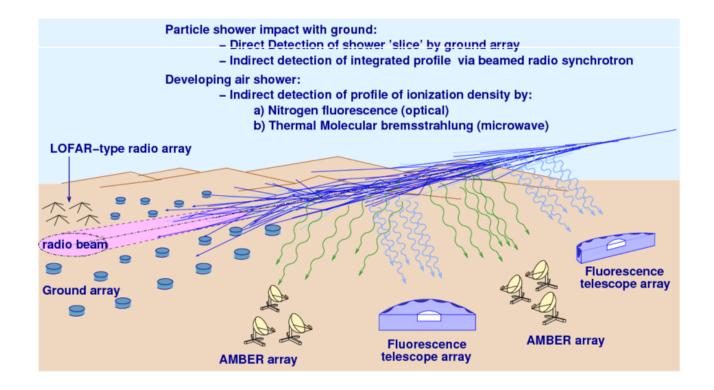
Graphic: Oindree Banerjee

• Transmitter (TX) broadcasts a radio signal into a volume

receiver(s)(RX) monitor this same volume

ΤХ

4/57
Pure ice is low-loss for radio: field attenuation lengths ~1 km


Radio detection of neutrinos

- We reached out to the usual suspects working on instrumentation for these projects
- Plan is to write an overview whitepaper, heavily citing existing work and filling in any gaps

Radio cosmic ray detection

 Radio CR detection folks prefer to stay in "mainstream" CR white papers

Instrumentation Frontier IF10

• These were the LOIs submitted to IF that involved radio frequencies directly or tangentially:

File	Title	contact	new co	IF	IF01	IF02	IF03	IF04	IF05	IF06	IF07	IF08	IF09
TOTALS			0	0	0	0	0	0	0	0	0	0	0
IF1-CF2-003.pdf	Tunable plasma haloscope	katherine.dunne@fysik.su.	:		x								
IF1_IF0-CF2_CF0-146.pdf	Spin-triplet superconductivity - a new foundation for magnetically resist	huang44@llnl.gov			x								
IF1_IF0-CF2_CF0-156.pdf	Resonant halo axion detectors for the mass range 16-41 ueV	chelsb89@uw.edu			х								
IF1_IF0-CF2_CF0-193.pdf	Radio frequency quantum upconverters: precision metrology for fundation	kuenstns@stanford.edu			х								
IF1 IF0-CF3 CF0 Rosen-167.pdf	Tunable quality factor resonators for high energy applications	rosen10@llnl.aov			x								
IF1_IF0-NF10_NF0-CF1_CF2_Golwala-0	Phonon-mediated KID-based detectors for low-mass dark matter dete	golwala@caltech.edu			х								
IF1_IF2-047.pdf	Warm electronics readout of superconducting microwave resonators	eyy@stanford.edu			Х	х							
IF1_IF2-177.pdf	Superconducting detector facility for HEP science	cecil@anl.gov			x	х							х
IF1_IF2-AF5_AF7_Nanni-162.pdf	Transduction for new regimes in quantum sensing	tony.heinz@stanford.edu			х	х							
IF1_IF2-CF2_CF0_Ankur_Agrawal-149.p	Superconducting qubit advantage for dark matter (SQuAD)	ankuragrawal@uchicago.e			х	х							
IF1 IF9-CF2 CF0 Gianpaolo Carosi-13	Topological microwave circulators for HEP applications	au2@llnl.aov			x								x
IF2_IF0_Erik_Shirokoff-187.pdf	Kinetic inductance detectors for long-wavelength photon detection	shiro@uchicago.edu				х							
IF2_IF10-NF10_NF0-UF1_UF3-144.pdf	IceCube-Gen2: the next generation wide band neutrino observatory	karle@icecube.wisc.edu				х							
IF2_IF6_Yu-181.pdf	The microwave SQUID multiplexer for cosmology and cryogenic partic	cyndiayu@stanford.edu				х				х			
IF4_IF0-NF5_NF0_Noah_Oblath-046.pdf	DAQ system for a large-volume CRES experiment	noah.oblath@pnnl.gov						x					
IF6_IF2-EF6_EF0_Peter_Gorham-039.pd	Calorimetric picosecond timing planes for future 100 TeV-scale collide	gorham@hawaii.edu				х				х			
IF7_IF9-CF2_CF4_Austin_Minnich-117.p	Towards quantum-limited transistor microwave amplifiers	aminnich@caltech.edu									x		x

 Many were cross-listed with other things, especially IF1(quantum sensors), IF2 (photons)

Future mm-wave detectors

- As mentioned previously there is a plan for a whitepaper on future mm-wave detectors
- Contact: Pete Barry (<u>pbarry@anl.gov</u>)

ACE calorimetry with radio

• Want to make sure this one has a home

File	Title	contact	new co	IF	IF01	IF02	IF03	IF04	IF05	IF06	IF07	IF08	IF09
TOTALS			0	0	0	0	0	0	0	0	0	0	0
IF1-CF2-003.pdf	Tunable plasma haloscope	katherine.dunne@fysik.su.			x								
IF1_IF0-CF2_CF0-146.pdf	Spin-triplet superconductivity - a new foundation for magnetically resist	huang44@llnl.gov			x								
IF1_IF0-CF2_CF0-156.pdf	Resonant halo axion detectors for the mass range 16-41 ueV	chelsb89@uw.edu			х								
IF1_IF0-CF2_CF0-193.pdf	Radio frequency quantum upconverters: precision metrology for fundation	kuenstns@stanford.edu			x								
IF1_IF0-CF3_CF0_Rosen-167.pdf	Tunable quality factor resonators for high energy applications	rosen10@llnl.gov			х								
IF1_IF0-NF10_NF0-CF1_CF2_Golwala-0	Phonon-mediated KID-based detectors for low-mass dark matter dete	golwala@caltech.edu			х								
IF1_IF2-047.pdf	Warm electronics readout of superconducting microwave resonators	eyy@stanford.edu			х	х							
IF1_IF2-177.pdf	Superconducting detector facility for HEP science	cecil@anl.gov			x	х							x
IF1_IF2-AF5_AF7_Nanni-162.pdf	Transduction for new regimes in quantum sensing	tony.heinz@stanford.edu			х	х							
IF1_IF2-CF2_CF0_Ankur_Agrawal-149.p	Superconducting qubit advantage for dark matter (SQuAD)	ankuragrawal@uchicago.e			х	х							
IF1_IF9-CF2_CF0_Gianpaolo_Carosi-13	Topological microwave circulators for HEP applications	qu2@llnl.gov			x								х
IF2_IF0_Erik_Shirokoff-187.pdf	Kinetic inductance detectors for long-wavelength photon detection	shiro@uchicago.edu				х							
IF2_IF10-NF10_NF0-UF1_UF3-144.pdf	IceCube-Gen2: the next generation wide band neutrino observatory	karle@icecube.wisc.edu				х							
IF2_IF6_Yu-181.pdf	The microwave SQUID multiplexer for cosmology and cryogenic parti	cyndiayu@stanford.edu				х				х			
IF4_IF0-NF5_NF0_Noah_Oblath-046 pdf	DAO system for a large-volume CRES experiment	noah oblath@pnnl.gov						x					
IF6_IF2-EF6_EF0_Peter_Gorham-039.pd	Calorimetric picosecond timing planes for future 100 TeV-scale collide	gorham@hawaii.edu				х				х			
IF7_IF9-CF2_CF4_Austin_Minnich-117.p	Towards quantum-limited transistor microwave amplifiers	aminnich@caltech.edu									х		x

Any other stragglers?

• Want to make sure this one has a home

File	Title	contact	new co	IF	IF01	IF02	IF03	IF04	IF05	IF06	IF07	IF08	IF09
TOTALS			0	0	0	0	0	0	0	0	0	0	0
IF1-CF2-003.pdf	Tunable plasma haloscope	katherine.dunne@fysik.su.			x								
IF1_IF0-CF2_CF0-146.pdf	Spin-triplet superconductivity - a new foundation for magnetically resist	huang44@llnl.gov			x								
IF1_IF0-CF2_CF0-156.pdf	Resonant halo axion detectors for the mass range 16-41 ueV	chelsb89@uw.edu			x								
IF1_IF0-CF2_CF0-193.pdf	Radio frequency quantum upconverters: precision metrology for fundation	kuenstns@stanford.edu			x								
IF1_IF0-CF3_CF0_Rosen-167.pdf	Tunable quality factor resonators for high energy applications	rosen10@llnl.gov			х								
IF1_IF0-NF10_NF0-CF1_CF2_Golwala-0	Phonon-mediated KID-based detectors for low-mass dark matter dete	golwala@caltech.edu			х								
IF1_IF2-047.pdf	Warm electronics readout of superconducting microwave resonators	eyy@stanford.edu			х	х							
IF1_IF2-177.pdf	Superconducting detector facility for HEP science	cecil@anl.gov			x	х							x
IF1_IF2-AF5_AF7_Nanni-162.pdf	Transduction for new regimes in quantum sensing	tony.heinz@stanford.edu			х	х							
IF1_IF2-CF2_CF0_Ankur_Agrawal-149.p	Superconducting qubit advantage for dark matter (SQuAD)	ankuragrawal@uchicago.e)		х	х							
IF1_IF9-CF2_CF0_Gianpaolo_Carosi-13	Topological microwave circulators for HEP applications	qu2@llnl.gov			x								х
IF2_IF0_Erik_Shirokoff-187.pdf	Kinetic inductance detectors for long-wavelength photon detection	shiro@uchicago.edu				х							
IF2 IF10-NF10 NF0-UF1 UF3-144.pdf	IceCube-Gen2: the next generation wide band neutrino observatory	karle@icecube.wisc.edu				х							
IF2_IF6_Yu-181.pdf	The microwave SQUID multiplexer for cosmology and cryogenic parti	cyndiayu@stanford.edu				х				х			
IF4_IF0-NF5_NF0_Noah_Oblath-046.pdf	DAQ system for a large-volume CRES experiment	noah.oblath@pnnl.gov						х					
IF6_IF2-EF6_EF0_Peter_Gorham-039.pd	Calorimetric picosecond timing planes for future 100 TeV-scale collide	gorham@hawaii.edu				х				х			
IF7_IF9-CF2_CF4_Austin_Minnich-117.p	Towards quantum-limited transistor microwave amplifiers	aminnich@caltech.edu									x		x

Any other stragglers?

• Any others that were classified in other IF areas that might be well suited for IF10?

File	Title	contact	new co	IF	IF01	IF02	IF03	IF04	IF05	IF06	IF07	IF08	IF09
TOTALS			0	0	0	0	0	0	0	0	0	0	0
IF1-CF2-003.pdf	Tunable plasma haloscope	katherine.dunne@fysik.su.			х								
IF1_IF0-CF2_CF0-146.pdf	Spin-triplet superconductivity - a new foundation for magnetically resist	huang44@llnl.gov			х								
IF1_IF0-CF2_CF0-156.pdf	Resonant halo axion detectors for the mass range 16-41 ueV	chelsb89@uw.edu			х								
IF1_IF0-CF2_CF0-193.pdf	Radio frequency quantum upconverters: precision metrology for fundation	kuenstns@stanford.edu			х								
IF1_IF0-CF3_CF0_Rosen-167.pdf	Tunable quality factor resonators for high energy applications	rosen10@llnl.gov			х								
IF1_IF0-NF10_NF0-CF1_CF2_Golwala-0	Phonon-mediated KID-based detectors for low-mass dark matter dete	golwala@caltech.edu			х								
IF1_IF2-047.pdf	Warm electronics readout of superconducting microwave resonators	eyy@stanford.edu			х	х							
IF1_IF2-177.pdf	Superconducting detector facility for HEP science	cecil@anl.gov			х	х							x
IF1_IF2-AF5_AF7_Nanni-162.pdf	Transduction for new regimes in quantum sensing	tony.heinz@stanford.edu			х	х							
IF1_IF2-CF2_CF0_Ankur_Agrawal-149.p	Superconducting qubit advantage for dark matter (SQuAD)	ankuragrawal@uchicago.e	•		х	х							
IF1_IF9-CF2_CF0_Gianpaolo_Carosi-13	Topological microwave circulators for HEP applications	qu2@llnl.gov			х								х
IF2_IF0_Erik_Shirokoff-187.pdf	Kinetic inductance detectors for long-wavelength photon detection	shiro@uchicago.edu				х							
IF2_IF10-NF10_NF0-UF1_UF3-144.pdf	IceCube-Gen2: the next generation wide band neutrino observatory	karle@icecube.wisc.edu				х							
IF2_IF6_Yu-181.pdf	The microwave SQUID multiplexer for cosmology and cryogenic partic	cyndiayu@stanford.edu				х				х			
IF4_IF0-NF5_NF0_Noah_Oblath-046.pdf	DAQ system for a large-volume CRES experiment	noah.oblath@pnnl.gov						х					
IF6_IF2-EF6_EF0_Peter_Gorham-039.pd	Calorimetric picosecond timing planes for future 100 TeV-scale collide	gorham@hawaii.edu				х				x			
IF7_IF9-CF2_CF4_Austin_Minnich-117.p	Towards quantum-limited transistor microwave amplifiers	aminnich@caltech.edu									x		x

 Suggestion: might be useful to denote in the main LOI spreadsheet their grouping in whitepapers? ¹¹

Going forward

- At least the two white papers for mid-March
 - Radio detection of neutrinos
 - Future of mm-wave detectors
 - Any others?