IF5: Instrumentation Frontier Topical group on Micro-Pattern Gaseous Detectors (MPGDs)

Conveners: Bernd Surrow, Maxim Titov, Sven Vahsen

https://snowmass21.org/instrumentation/mpgd <--- convenor contact info, mailing list

IF5 White Papers

	Торіс	Executive Summary Length		White Paper Leads
1	MPGDs: Recent advances and current R&D	3		Klaus Dehmelt, Andy White
2	MPGDs for nuclear physics experiments	1.5		Kondo Gnanvo, Matt Posik
3	Recoil imaging for DM, neutrino, and BSM physics*	1.5	+1.5+1.5 (IF+NF+CF)	Dinesh Loomba, Ciaran O'Hare
4	MPGDs for TPCs at future lepton colliders	1.5		Alain Bellerive
5	MPGDs for muon detection at future colliders	1.5		Anna Colaleo, Kevin Black
	Grand summary table + text	1		IF5 conveners

*Multi-frontier paper with Cosmic and Neutrino Frontiers

Basis for 10-page summary of IF5

- Advanced drafts of all white papers in place --- PDFs uploaded to Indico
- Thanks to the authors for their tremendous efforts!
- A bit more detailed status on following pages
- Feedback on missing items encouraged within next 2 weeks, please send directly to White Paper leads
- Aiming for 1.5-page executive summary for most WPs → combine into 10-page summary of IF5

IF05 Whitepaper 1: WPLs: Klaus Dehmelt, Andy White MPGDs: Recent advances and current R&D

LOI title	Contact	Status
Development of the Micro-Pattern gaseous detector technologies: an overview of the CERN-RD51 collaboration	awhite@uta.edu / klaus.dehmelt@stonybrook.edu	Draft section
High precision timing with the PICOSEC micromegas detector	sebastian.white@cern.ch	Draft section
Optical readout of MicroPattern Gaseous Detectors: developments and perspectives	florian.brunbauer@cern.ch	Duplicate - removed
Pixelated resistive MicroMegas for high-rates environment	massimo.della.pietra@cern.ch	Draft section
Trigger extensions for the scalable readout system SRS	hans.muller@cern.ch	Draft section
A high-gain, low ion-backflow double micro-mesh gaseous structure	zhzhy@ustc.edu.cn	Draft section
LOI from NSCL	cortesi@nscl.msu.edu	Duplicate - removed

Outline: After discussions with RD51 Management – outline will use RD51 LOI as overall guide, use sections of submission to LHCC for RD51 detailed activities, and add in sections from the other six LOI listed above.

arXiv Preprint February 17, 2022

Snowmass White Paper IF05 Whitepaper 1: MPGDs: Recent advances and current R&D

K. DEHMELT, A. WHITE, AND LOI AUTHORS (TO BE INSERTED)

ABSTRACT

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

1

• 51 pages

- Mature text
- Missing
 - Integration of chapters
 - Table of contents
 - Executive summary

IF5 WP2: MPGDs for nuclear physics experiments

LOI title	Contact
Advanced Micro-Pattern Gas Detectors for Tracking at the Electron Ion Collider	hohlmann@fit.edu
Development of large micro pattern gaseous detectors for high rate tracking at Jefferson Lab	kgnanvo@virginia.edu
LOI from NSCL	cortesi@nscl.msu.edu
The role of MPGD-based photon detectors in RICH technologies	Silvia.DallaTorre@ts.infn.it
Snowmass 2021 Expression of Interest: MPGD-based Transition Radiation Detector	yulia@jlab.org

Title: MPDG Roles in Nuclear Physics Experiments

Micro Pattern Gaseous Detectors (MPGDs) for Nuclear Physics

F. Barbosa^a, M. Cortesi^c, S. Dalla Torre¹, Y. Furletova^a, K. Gnanvo (Lead Organiser)^{a,*}, M. Hohlmann^f, D. Neyret⁴, M. Posik (Lead Organiser)^b

^aThomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA ^bTemple University, Philadelphia, PA 23606, USA ^cFacility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, USA ^dCEA Saclay IRFU, Université Paris-Saclay, France ^eFlorida Institute of Technology, Melbourne, FL 32901, USA *f*INFN Trieste

Contents

1	Exe	cutive Summary	
	1.1	MPGD Technologies for Nuclear Physics at Jefferson Lab	
	1.2	MPGD Technologies for Low Energy Nuclear Physics at FRIB	
	1.3	Advanced Micro Pattern Gas Detectors for Tracking at the Electron Ion Collider	-
	1.4	MPGD Technologies for Particle Identification in Nuclear Physics Experiments	
	1.5	Electronics, DAQ, and Readout Systems for MPGD Technologies	
	1.6	Need for Dedicated Nuclear Physics MPGD Development Facility	
2	Adv	anced Micro Pattern Gas Detectors for Tracking at the Electron Ion Collider	
	2.1	The Electron Ion Collider	•
		2.1.1 Accelerator and Physics Overview	
		2.1.2 MPGD Tracking Requirements at the EIC	•
	2.2	Recent and Current R&D Efforts	
		2.2.1 Accommodating a Small Material Budget	
		2.2.2 Readout Structures	
	2.3	Future MPGD R&D related to EIC	
	2.4	Need for a Nuclear Physics MPGD Development Facility	

*Corresponding author Email address: kagnanvo@jlab.org (K. Gnanvo (Lead Organiser))

Preprint submitted to Elsevier

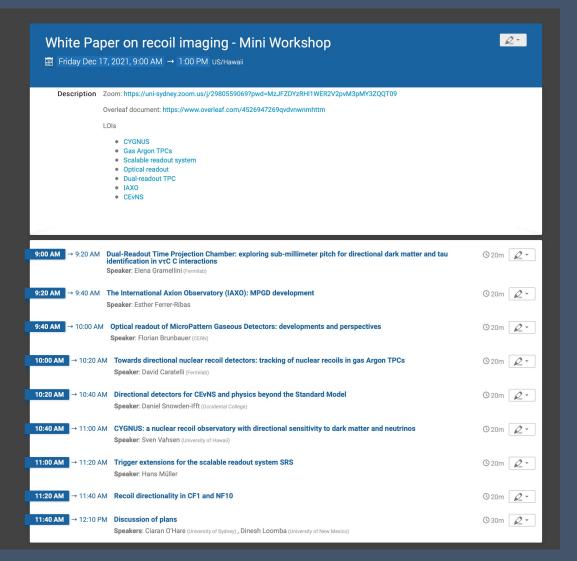
3	MP	GD tech	nologies for Low Energies Nuclear Physics	10
	3.1	Introdu	uction	10
	3.2	Requir	ements of low-energy nuclear physics experiments at FRIB	10
		3.2.1	Rate and multiplicity	10
		3.2.2	Gas Gain and dynamic range	11
		3.2.3	Size and complexity and versatility	11
	3.3	Presen	t MPGDs-based detectors at FRIB	11
		3.3.1	Drift chamber for tracing at the focal plane of high-rigidity spectrometers $\ldots \ldots \ldots \ldots$	11
		3.3.2	Time-Projection-Chambers operated in Active-Target ode (AC-TPC)	11
		3.3.3	The Gaseous Detector with Germanium Tagging (GADGET)	12
		3.3.4	Path Forward and new opportunities:	12
		3.3.5	Broader Impact:	13
		3.3.6	Common facility for production and development of new fabrication technologies	13
4	Deve	elopmei	it of Large MPGDs for High-Rate Experiment at Jefferson Lab	14
	4.1	Introdu	action	14
	4.2	MPGE	0 technologies at JLab	14
		4.2.1	Overview of Current MPGDs in Experiment at JLab	14
		4.2.2	MPGDs Needs for Future Experiments at JLab: Common aspects & differences with HEP $\ ,\ ,$	14
	4.3	Challe	nges and R&D efforts for future experiments at JLab	15
		4.3.1	Tracking in High Rate Environment	15
		4.3.2	Development of low channel count & high performance readout structures	16
	4.4	Need f	or MPGDs R&D facility in the US for the Nuclear Physics community	17
5	MP	GD Tec	nnologies for Particle Identification in Nuclear Physics Experiments	18
	5.1	The ro	le of MPGD-based Photon Detectors in RICH Technologies	18
	5.2	MPGE	D-based Transition Radiation Detector	20
		5.2.1	Physics motivation	20
		5.2.2	Current experience/experiments	20
		5.2.3	R&D for future experiments (prototype,readout, radiator,gas)	21
	5.3	PICOS	EC: MPGD for TOF at the EIC	23
6	Elec	tronics,	DAQ & readout system for MPGD technologies	24
	6.1	Stream	ing readout at the EIC	24

6.2	Stream	ning readout for MPGD detectors	25
	6.2.1	Online MPGD data reduction and filtering	25
	6.2.2	ML techniques for MPGD data processing	25
6.3	MPGI	D front-end electronics adapted to triggerless mode	25
	6.3.1	Presently existing front-end ASICs	25
	6.3.2	Project for a new chip in 65 nm technology	26
	6.3.3	Needs for specific MPGD applications	27

28 pages

The structure is almost final
Editing still

ongoing


IF5 WP3: Recoil imaging for DM, neutrino, and BSM physics

LOI title	Contact
CYGNUS: a nuclear recoil observatory with directional sensitivity to dark matter and neutrinos	sevahsen@hawaii.edu
Optical readout of MicroPattern Gaseous Detectors: developments and perspectives	florian.brunbauer@cern.ch
	David Caratelli
Towards directional nuclear recoil detectors: tracking of nuclear recoils in gas Argon TPCs	(davidc@fnal.gov)
Dual-Readout Time Projection Chamber: exploring sub-millimeter pitch for directional dark matter	Elena Gramellini,
and tau identification in vτC C interactions.	elenag@fnal.gov
Directional detectors for CEvNS and physics beyond the Standard Model	Difft@oxy.edu
	Daniel Snowden Ifft
Trigger extensions for the scalable readout system SRS	Hans.Muller@cern.ch
The International Axion Observatory (IAXO): MPGD development	E. Ferrer Ribas esther.ferrer-ribas@cea.fr

Inter-frontier (Neutrino, Dark Matter, Instrumentation) White Paper on directional nuclear + electron recoil detection w/ dedicated executive summaries for each Snowmass topical group (including MPGD requirements for IF5)

https://indico.fnal.gov/event/52282/

Workshop held in December Video available by request

Recoil imaging for dark matter, neutrinos, and physics beyond the Standard Model

Snowmass 2021 inter-frontier white paper: CF1: Particle-like dark matter NF10: Neutrino detectors IF5: Micro-pattern gas detectors

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

Abstract

Recoil imaging entails the direct measurement of one or more components of a recoiling particle's direction. This is a capability highly sought-after in detectors, with applications across particle and astroparticle physics. However, currently it seems to only be a practical goal for micro-pattern gas detectors (MPGDs). This white paper outlines the physics case for directional recoil detection, and puts forward a decadal plan to advance towards high definition recoil imaging, in the context of the MPGD topical group of the Snowmass 2021 Instrumentation Frontier community study. The science case covered includes the discovery of DM into the neutrino fog, directional detection of neutrino-electron scattering, the precision study of coherent-elastic neutrino-nucleus scattering, the measurement of the Migdal effect, as well as several other applied physics goals. We also describe several ongoing R&D projects that will test crucial ideas such as the use of negative ion drift in MPGDs, the possibility for sub-mm tracking in gaseous argon time projection chambers, as well as the readout and electronics systems needed for detector scale-up to the ton-scale and beyond.

C. A. J. O'Hare (Coordinator)¹, D. Loomba (Coordinator)², J. Asaadi³, D. Aristizabal Sierra⁴, C. Awe⁵, E. Baracchini⁶, P. Barbeau⁷, N. F. Bell⁸, L. J. Bignell⁹, C. Boehm¹⁰, F. M. Brunbauer¹¹, V. De Romeri¹², B. Dutta¹³, D. Caratelli¹⁴, J. B. R. Battat¹⁵, F. Dastgiri¹⁶, C. Deaconu¹⁷, K. Desch¹⁸, C. Eldridge¹⁹, A. C. Ezeribe²⁰, A. Fava²¹, E. Ferrer Ribas²², M. Froehlich²³, M. Ghrear²⁴, K. Gnanvo²⁵, E. Gramellini²⁶ R. Hall-Wilton²⁷, R. Harnik²⁸, J. Harton²⁹, S. Hedges³⁰, I.G. Irastorza³¹, B. Jones³², K. Kelly³³, G. Lane³⁴, P. M. Lewis³⁵, W. A. Lynch³⁶, P. Machado³⁷, K. J. Mack³⁸, D. Markoff³⁹, L. J. McKie⁴⁰, P. C. McNamara⁴¹, H. Muller⁴², K. Miuchi⁴³, H. Natal da Luz⁴⁴, J. L. Newstead⁴⁵, E. Oliveri⁴⁶, Y. F. Perez-Gonzalez⁴⁷,

D. Pfeiffer⁴⁸, N. S. Phan⁴⁹, S. Popescu⁵⁰, J. Raaf⁵¹, L. Ropelewski⁵², A. Rusu⁵³, L. Scharenberg⁵⁴, K. Scholberg⁵⁵, Z. Slavkovska⁵⁶, D. Snowden-Ifft⁵⁷, N. J. C. Spooner⁵⁸, L. Strigari⁵⁹, A. E. Stuchberry⁶⁰,

T. N. Thorpe⁶¹, P. Urquijo⁶², S. E. Vahsen⁶³, J.K. Vogel⁶⁴, M. H. Wood⁶⁵, and J. Zettlemoyer⁶⁶

Contents

Exe	curve summary	4
Inti	roduction	5
2.1	Physics of the ionization process	7
2.2	Current status of directional recoil detection using MPGDs	8
	Intr 2.1	Introduction 2.1 Physics of the ionization process 2.2 Current status of directional recoil detection using MPGDs

3 Dark matter

Dark matter	9
3.1 Directionality for dark matter discovery	9
3.2 Directionality and the neutrino fog	10
3.3 CYGNUS	12
3.4 CYGNUS Internationally	15
Neutrinos	16
	17
0	17
	19
	20
	20
4.5 Tau neutrinos	21
Beyond the SM	21
5.1 Searches for BSM physics using a neutrino source	21
5.2 Axion-like particles	22
5.3 MPGD development for IAXO	23
Other applications	26
	26
6.2 Directional Neutron detection	28
6.3 X-ray polarimetry	28
6.4 Rare nuclear decays	30
Near-future detector development	30
	30
	30
	31
	31
	32
	34
	35
Blue-sky R&D	37
	37
8.2 MPGD TPCs at large-scale	37
Conclusions	37
	3.1 Directionality for dark matter discovery 3.2 Directionality and the neutrino fog 3.3 CYGNUS 3.4 CYGNUS Internationally Neutrinos

3

• 53 pages

- Some minor parts missing
- Some selfplagiarized text (plan to rewrite)
- Considering publishing the result

WPL: Alain Bellerive

IF5 WP4: MPGDs for TPCs at future lepton colliders

LOI title	Contact
	for TPC: Peter Lewis;
Belle II detector upgrades	lewis@physik.uni-bonn.de
Time projection chamber R&D	qihr@ihep.ac.cn
A time projection chamber using advanced technology for the International Large Detector at the	2
International Linear Collider	alainb@physics.carleton.ca
A high-gain, low ion-backflow double micro-mesh gaseous structure	zhzhy@ustc.edu.cn

IF5: Micro Pattern Gas Detectors (MPGDs) January 31, 2022

MPGDs for TPCs at future lepton colliders

A. Bellerive

Department of Physics, Carleton University, Ottawa, ON, K1S 5B6, Canada

ABSTRACT

This submission will focus on advancements and advantages of Micro Pattern Gas Detector (MPGD) technologies together with their applications for the construction of a dedicated Time Projection Chamber (TPC) that can serve as an excellent main tracker for any multipurpose detector that can be foreseen to operate at a future lepton collider. The first portion of the report will be the 1.5 page executive summary. It will be followed by sections detailing on applications of MPGDs specifically for the construction of the LCTPC for the ILD at ILC, for a possible upgrade of the Belle II detector and for the design of a TPC for a detector at CEPC. MPGD technologies offer synergy with other detector R&D's and several application domains; a few examples will be provided in the context of the long range planning exercise in the USA. Link to industrial partnership and work with institutions in the USA will be highlighted when appropriate.

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

22

on the Future of Particle Physics (Snowmass 2021)

- 15 pages
- Close to finished
- Reviewed by LOI submitters, feedback already incorporated
- For the final version (planned next Monday):
 - add references
 - minor grammar & text edits
 - add figure about GridPix (and make a stronger case for dE/dx and resolution)
 - add author list

WP#5: MPGD for tracking and Muon detection at future high energy physics colliders

Title LOI title Contact(s) Chapter Anna.Colaleo@cern.ch Introduction ok Kevin.Black@cern.ch MPGDs for tracking and muon detection: progress hohlmann@fit.edu No feedback from review and updated R&D proponent. roadmap High granularity Pixelated resistive resistive Micromegas MicroMegas for highpaolo.iengo@cern.ch ok for high rates rates environment Advanced GFM detectors Advanced GEM detectors Antonello.Pellecchia@cern.c for future collider for future collider ok h, Jeremie.Merlin@cern.ch experiments experiments u-RWELL for HEP Giovanni.Bencivenni@Inf.inf micro-RWELL detector ok experiments n.it Beatrice.Mandelli@cern.ch Gas system for HEP Roberto.Guida@cern.ch ok

WPL: A. Colaleo, K. Black

Status

- We have recently combined four different articles in one document.
- We need to still some tweak to get uniform style, acronyms etc.
- Each chapter in very good shape
- Internal review of the authors is still on-going.
- Bibliography, list of author to be finalized.
- Link to the draft document:
- <u>https://www.dropbox.com/s/013w5kqsttk8d13/Snowmass_all_WP5.pdf?dl=0</u>

MPGD for tracking and Muon detection at future high energy physics colliders

Snowmass Instrumentation Frontier: MPGD White paper 5

K. BLACK¹, A. COLALEO² (COORDINATORS)
 M. ALVIGGI³, M.T. CAMERLINGO⁴, V. CANALE³, V. D'AMICO⁵, M. DELLA PETRA³,
 C. DI DONATO³, R. DI NARDO⁵, S. FRANCHELLUCCI⁵, P. LENCO⁶, M. IODICE⁷, F. PETRUCCI⁵, G. SEKHINIAIDZE⁸, M. SESSA⁵, A. PELLECCHIA¹, R. VENDITTI¹,
 P. VERWILLIGE⁹, M. HOHLMANN¹⁰, J.MERLIN ¹³, A. SIARMA¹², I. BALOSSINO¹³,
 G. CHIBNTTO¹³, R. FARINELLI¹³, I. GARZAI³, S. GRAMIGNA¹³, M. MELCHIORRI¹³,
 G. MEZADRI¹³, M. SCODEGGIO¹³, V. CAFARO¹⁴, P. GIACOMELLI¹⁴, G. BENCIVENNI¹⁵,
 M. BERTANI¹⁵, E. DE LUCIA¹⁵, D. DOMENICI¹⁵, G. FELCI¹⁵, M. GATAI¹⁵,
 M. GUDA¹², B. MANDELLI¹², M. CORBETTA¹², G. RIGOLETTI¹²

¹University of Wisconsin-Madison, US ²INFN Sez. Bari and University of Bari, Bari, IT; ³University and INFN Sez. Napoli, Naples, IT; ⁴University and INFN Sez. Roma Tre, Rome, IT and CERN, Geneva, CH; ⁵University and INFN Sez. Roma Tre, Rome, IT; ⁶INFN Sez. Napoli, Naples, IT, and CERN, Geneva, CH; ⁷INFN Sez. Roma Tre, Rome, IT; ⁸INFN Sez. Napoli, Naples, IT; ⁹INFN Sez. Bari, Bari, IT; ¹⁰Florida institute of technology; ¹¹University of Seoul: ¹²CERN - European Organization for Nuclear Research; ¹³INFN Sez. Ferrara, Ferrara IT; ¹⁴INFN Sez. Bologna, IT; ¹⁵Laboratori Nazionali di Frascati - INFN, Frascati (RM), Italy; ¹⁶INFN Torino, Italy;

E-mail: anna.colaleo@uniba.it, kblack@hep.wisc.edu, paolo.iengo@cern.ch, jeremic.alexandre.merlin@cern.ch, antonello.pellecchia@ba.infn.it, giovanni.bencivenni@Inf.it, bartrice.mandelli@cern.ch

> Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

Contents

In	trod	uction	4
1	Hig	h granularity resistive Micromegas for high rates	7
	1.1	Introduction	7
		1.1.1 Detector description	7
	1.2	State of the art	8
		1.2.1 Resistive layouts	8
		1.2.2 Performance	11
		1.2.3 Charging up effect	11
		1.2.4 Gain and energy resolution	13
		1.2.5 Rate capability	14
		1.2.6 Spatial resolution and efficiency	17
	1.3	Fields of applications	21
	1.4	Ongoing development and future work	21
	1.5	Conclusions	23
2	Adv	vanced GEM detectors for future collider experiments	25
	2.1	Basic principle of a GEM detector	26
	2.2	GEM design optimization for high rate applications	27
		2.2.1 Rate capability over large areas	27
		2.2.2 Discharge propagation and long-term protection	30
	2.3	Alternative GEM-based designs	41
		2.3.1 Resistive GEM detectors	41
		2	

	2.3.2 Time resolution	42
2.4	Conclusion and perspectives	49
μ- F	WELL for HEP experiments	51
3.1	High Rate layouts for muon detection	53
	3.1.1 Performance of the HR-layouts with pion beam	57
	3.1.2 Rate capability measurement with X-ray	58
3.2	Muon tracking at FCC-ee and CepC	60
3.3	Low mass cylindrical Inner Trackers	63
	3.3.1 The cathode	64
	3.3.2 The anode	65
Ga	s systems for particle detectors	70
4.1	Introduction	70
4.2	Strategies for reducing the gas consumption	70
	4.2.1 Open mode gas system	71
	4.2.2 Gas recirculation system	71
	4.2.3 Gas recuperation systems	73

3

• 81 pages

• Introduction = executive summary?

February 18, 2022

Summary & Questions

• MPGD Topical Group White Papers in good shape, nearly complete

- Current PDF for all papers uploaded after this talk on Indico
- Total of 228 pages!
- Thanks to the authors for their tremendous efforts!
- Good time for feedback on missing contents / balance of contents. Please provide this no later than two weeks from now.
- Probably too early for feedback on typos and details.
- Questions from IF5 to Snowmass:
 - OK to submit white papers to journals after March 15? We assume yes.
 - Cross-referencing between white papers? Plan: use preliminary citations with full white paper names, working group, and number for now. Replace citations with arxiv citations after March 15.

BACKUP

Past IF5 activities

- We held bi-weekly meetings before the Snowmass pause https://indico.fnal.gov/category/1185/
 - Collected input from the community
 - Reviewed technical presentations
 - Encouraged submission of Letters of intent (LOIs)
- 40 LOIs were submitted to IF5
 - https://snowmass21.org/instrumentation/mpgd
- We identified a few additional LOIs relevant to IF5
- Most LOIs were consolidated into five White Papers
 - A few LOIs passed on to other topical groups
- Restarted meetings focused on these White Papers in 2021

IF5 WP1 MPGDs: Recent advances and current R&D

LOI title	Contact
Development of the Micro-Pattern gaseous detector technologies: an overview of the CERN-RD51 collaboration	Silvia.DallaTorre@ts.infn.it
High precision timing with the PICOSEC micromegas detector	Christos.Lampoudis@cern.ch
Optical readout of MicroPattern Gaseous Detectors: developments and perspectives	florian.brunbauer@cern.ch
Pixelated resistive MicroMegas for high-rates environment	massimo.della.pietra@cern.ch
Trigger extensions for the scalable readout system SRS	Hans.Muller@cern.ch
A high-gain, low ion-backflow double micro-mesh gaseous structure	zhzhy@ustc.edu.cn
LOI from NSCL	cortesi@nscl.msu.edu

Scope of IF5

- This Snowmass 2021 topical group will identify and document recent developments and future needs for Micro-Pattern Gaseous Detector (MPGD) technologies, driven by the availability of modern photolithographic techniques.
- Current MPGD technologies include the Gas Electron Multiplier (GEM), the Micro-Mesh Gaseous Structure (MicroMegas), THick GEMs (THGEMs), also referred to in the literature as Large Electron Multipliers (LEMs), the Resistive Plate WELL (RPWELL), the GEM-derived architecture (micro-RWELL), the Micro-Pixel Gas Chamber (μ-PIC), and the integrated pixel readout (InGrid).
- In recent years, there has been a surge in the use of MPGDs. MPGDs are now used in major ongoing particle-collider experiments (e.g., ATLAS, CMS, and ALICE at the LHCb) and are in development for future facilities (e.g., EIC, ILC, FCC, and FAIR). A majority of MPGD developers and users coordinate and collaborate as part of the CERN-RD51 collaboration.
- MPGDs are of interest for particle/hadron/heavy-ion/nuclear physics, charged particle tracking, photon detectors and calorimetry, neutron detection and beam diagnostics, neutrino physics, and dark matter detection, including operation at cryogenic temperatures. Beyond fundamental research, MPGDs are in use and considered for scientific, social, and industrial purposes; this includes the fields of material sciences, medical imaging, hadron therapy systems, and homeland security.

6 LOIs were co-assigned to IF5, but another TG should take the lead

IF3_IF5_Simone_Mazza-175.pdf	High density 3D integration of LGAD sensors through wafer to wafer bonding	simazza@ucsc.edu	Suggest IF3
IF6_IF5_Laktineh-Calice-050.pdf	Timing semi-digital hadronic calorimeter (T-SDHCAL)	laktineh@in2p3.fr	Suggest IF6
IF8_IF5-NF10_NF0_Ben_Jones- 070.pdf	Scintillating and quenched gas mixtures for HPGTPCs	ben.jones@uta.edu	Focused on scintillation and gas physics. Let other TG take lead.
EF3_EF4-IF3_IF5-031.pdf	The IDEA drift chamber for a Lepton Collider	franco.grancagnolo@le.infn.i t	IDEA drift chamber. Tracking. Suggest IF3.
EF4 EF0-AF3 AF0- IF3 IF5 GrahamWilson-119.pdf	Exploring precision electroweak physics measurement potential of e+e- colliders	gwwilson@ku.edu	Focused on physics, not MPGDs. Needs another TG.
IF7_IF5_H.MULLER-101.pdf	Trigger extensions for the scalable readout system SRS	Hans.Muller@cern.ch	Let IF7 take lead, but should also be discussed in IF5 whitepaper

LOIs that did not indicate IF5, but which are relevant to our White Papers

Authors of these LOIs agreed to contribute to White paper #3 (Recoil imaging)

IF8 IF0-NF10 NF6 Jacob Zettlemoyer- 150.pdf	Towards directional nuclear recoil detectors: tracking of nuclear recoils in gas Argon TPCs	David Caratelli (davidc@fnal.gov)
IF/SNOWMASS21-IF9_IF8-NF3_NF10- CF1_CF0-145.pdf	Dual-Readout Time Projection Chamber: exploring sub-millimeter pitch for directional dark matter and tau identification in ντC C interactions.	Elena Gramellini, (Fermi National Accelerator Laboratory), elenag@fnal.gov
	Directional detectors for CEvNS and physics beyond the Standard Model	Difft@oxy.edu Daniel Snowden Ifft

Submitted LOIs: 24 (links below are clickable)

https://snowmass21.org/instrumentation/mpgd

1	CF/SNOWMASS21-CF1_CF0-NF10_NF4-IF5_IF4_Vahsen-18	<u>39.pdf</u>	31/08/2020
2	EF/SNOWMASS21-EF3 EF4-IF3 IF5-031.pdf		06/08/2020
3	EF/SNOWMASS21-EF4 EF0-AF3 AF0-IF3 IF5 GrahamWils	son-119.pdf	30/08/2020
4	IF/SNOWMASS21-IF2 IF7 IF3 IF4 IF5 IF6-056.pdf		29/08/2020
5	IF/SNOWMASS21-IF3 IF5-EF1 EF4-183.pdf		01/09/2020
6	IF/SNOWMASS21-IF3 IF5 Simone Mazza-175.pdf		31/08/2020
7	IF/SNOWMASS21-IF5-005.pdf		27/07/2020
8	IF/SNOWMASS21-IF5-EF4-007.pdf		07/08/2020
9	IF/SNOWMASS21-IF5_CF2_AF5_Ferrer-Ribas-020.pdf		27/08/2020
10	IF/SNOWMASS21-IF5 IF0-057.pdf		30/08/2020
11	IF/SNOWMASS21-IF5 IF0-184.pdf		01/09/2020
12	IF/SNOWMASS21-IF5 IF0-193.pdf		08/09/2020 lat
13	IF/SNOWMASS21-IF5 IF0 Brunbauer-096.pdf		31/08/2020
14	IF/SNOWMASS21-IF5_IF0_C.Lampoudis-098.pdf		31/08/2020
15	IF/SNOWMASS21-IF5 IF0 Gnanvo Hohlmann Posik Surre	ow-044.pdf	28/08/2020
16	IF/SNOWMASS21-IF5_IF0_Kondo_Gnanvo-159.pdf		31/08/2020
17	IF/SNOWMASS21-IF5_IF0_M_Hohlmann-040.pdf		28/08/2020
18	IF/SNOWMASS21-IF5_IF0_Marco_Cortesi-103.pdf		31/08/2020
19	IF/SNOWMASS21-IF5_IF3-015.pdf		24/08/2020
20	IF/SNOWMASS21-IF5_IF6-EF4_EF0_COLALEO-068.pdf		30/08/2020
21	IF/SNOWMASS21-IF5_IF9-EF0_EF0-168.pdf		31/08/2020
22	IF/SNOWMASS21-IF6_IF5_Laktineh-Calice-050.pdf		29/08/2020
23	IF/SNOWMASS21-IF7_IF5_H.MULLER-101.pdf_		31/08/2020
24	IF/SNOWMASS21-IF8_IF5-NF10_NF0_Ben_Jones-070.pdf		30/08/2020
	February 18, 2022	Sven Vahsen, Snowmass IF WP meeting	22