Theory working group

Julian Heeck

Mu2e-II Snowmass22 Workshop XI

2/22/2022

Theory working group

- Julian Heeck (University of Virginia)
- Lorenzo Calibbi (Nankai University)
- Members:
 - Robert Szafron (BNL)
 - Yuichi Uesaka (Kyushu Sangyo University)
- Mailing list: mu2eii-theory@fnal.gov

Comments, questions, and members welcome!

White paper theory section

- General motivation for LFV
- Specific motivation for Mu2e upgrade
- Isotope dependence of muon-to-electron conversion and identification of next targets
- Isotope dependence of muon decay in orbit background
- Motivation for other searches ($\mu \rightarrow e \ X \ \& \ \mu^{-} \rightarrow e^{+}$)

General motivation for LFV

- Standard arguments:
 - neutrino oscillations motivate LFV
 - different models/operators give $\mu \rightarrow e\gamma$, $\mu \rightarrow 3e$, $\mu \rightarrow e$ con.
 - µLFV probes scales far above colliders
- Motivation by anomalies:
 - anomalies in (g-2) $_{\!\mu}$ and B-meson decays hint at special status of muons
 - models generically predict μ LFV

Specific motivation for Mu2e-II

- B-meson anomalies hint at leptoquarks, which generically enhance $\mu \rightarrow e$ conversion over $\mu \rightarrow e \gamma$, $\mu \rightarrow 3e$.
- Mu2e-II can fully exclude some models:

 If mu → e conversion is observed (yeay!), we can start looking for the underlying operator.

$$\begin{split} \mathcal{L}_{\mu e} &= -\frac{4\mathsf{G}_{\mathsf{F}}}{\sqrt{2}}\sum_{\mathsf{X}=\mathsf{L},\mathsf{R}}\left[\mathsf{m}_{\mu}\mathsf{C}_{\mathsf{D},\mathsf{X}}\,\overline{\mathsf{e}}\sigma^{\alpha\beta}\mathsf{P}_{\mathsf{X}}\mu\,\mathsf{F}_{\alpha\beta} + \sum_{\mathsf{N}=\mathsf{p},\mathsf{n}}\left(\mathsf{C}_{\mathsf{S},\mathsf{X}}^{\mathsf{N}}\,\overline{\mathsf{e}}\mathsf{P}_{\mathsf{X}}\mu\,\overline{\mathsf{N}}\mathsf{N} + \mathsf{C}_{\mathsf{P},\mathsf{X}}^{\mathsf{N}}\,\overline{\mathsf{e}}\mathsf{P}_{\mathsf{X}}\mu\,\overline{\mathsf{N}}\gamma_{\sigma}\mathsf{N} \right. \\ &+ \mathsf{C}_{\mathsf{V},\mathsf{X}}^{\mathsf{N}}\,\overline{\mathsf{e}}\gamma^{\alpha}\mathsf{P}_{\mathsf{X}}\mu\,\overline{\mathsf{N}}\gamma_{\alpha}\mathsf{N} + \mathsf{C}_{\mathsf{A},\mathsf{X}}^{\mathsf{N}}\,\overline{\mathsf{e}}\gamma^{\alpha}\mathsf{P}_{\mathsf{X}}\mu\,\overline{\mathsf{N}}\gamma_{\alpha}\gamma_{5}\mathsf{N} \\ &+ \mathsf{C}_{\mathsf{Der},\mathsf{X}}^{\mathsf{N}}\,\overline{\mathsf{e}}\gamma^{\alpha}\mathsf{P}_{\mathsf{X}}\mu\,\overline{\mathsf{N}}\overleftrightarrow{\partial}_{\alpha}\mathrm{i}\gamma_{5}\mathsf{N} + \mathsf{C}_{\mathsf{T},\mathsf{X}}^{\mathsf{N}}\,\overline{\mathsf{e}}\sigma^{\alpha\beta}\mathsf{P}_{\mathsf{X}}\mu\,\overline{\mathsf{N}}\sigma_{\alpha\beta}\gamma_{5}\mathsf{N}\right) \Big] + \mathrm{h.c.} \end{split}$$

 If mu → e conversion is observed (yeay!), we can start looking for the underlying operator.

$$\mathcal{L}_{\mu e} = -\frac{4\mathsf{G}_{\mathsf{F}}}{\sqrt{2}} \sum_{\mathsf{X}=\mathsf{L},\mathsf{R}} \left[\mathsf{m}_{\mu} \mathsf{C}_{\mathsf{D},\mathsf{X}} \bar{\mathsf{e}} \sigma^{\alpha\beta} \mathsf{P}_{\mathsf{X}} \mu \, \mathsf{F}_{\alpha\beta} + \sum_{\mathsf{N}=\mathsf{p},\mathsf{n}} \left(\mathsf{C}_{\mathsf{S},\mathsf{X}}^{\mathsf{N}} \bar{\mathsf{e}} \mathsf{P}_{\mathsf{X}} \mu \, \overline{\mathsf{N}} \mathsf{N} + \mathsf{C}_{\mathsf{P},\mathsf{X}}^{\mathsf{N}} \bar{\mathsf{e}} \mathsf{P}_{\mathsf{X}} \mu \, \overline{\mathsf{N}} \gamma_{5} \mathsf{N} \right. \\ \left. + \mathsf{C}_{\mathsf{V},\mathsf{X}}^{\mathsf{N}} \bar{\mathsf{e}} \gamma^{\alpha} \mathsf{P}_{\mathsf{X}} \mu \, \overline{\mathsf{N}} \gamma_{\alpha} \mathsf{N} + \mathsf{C}_{\mathsf{A},\mathsf{X}}^{\mathsf{N}} \bar{\mathsf{e}} \gamma^{\alpha} \mathsf{P}_{\mathsf{X}} \mu \, \overline{\mathsf{N}} \gamma_{\alpha} \gamma_{5} \mathsf{N} \right. \\ \left. + \mathsf{C}_{\mathsf{Der},\mathsf{X}}^{\mathsf{N}} \bar{\mathsf{e}} \gamma^{\alpha} \mathsf{P}_{\mathsf{X}} \mu \, \overline{\mathsf{N}} \overleftarrow{\partial}_{\alpha} i \gamma_{5} \mathsf{N} + \mathsf{C}_{\mathsf{T},\mathsf{X}}^{\mathsf{N}} \bar{\mathsf{e}} \sigma^{\alpha\beta} \mathsf{P}_{\mathsf{X}} \mu \, \overline{\mathsf{N}} \sigma_{\alpha\beta} \gamma_{5} \mathsf{N} \right) \right] + \mathrm{h.c.} \\ \left. \mathsf{spin independent} \right] \qquad \mathsf{R}_{\mu \mathsf{e}} = \frac{32\mathsf{G}_{\mathsf{F}}^{2}}{\mathsf{\Gamma_{capture}}} \left[|\tilde{\mathsf{v}} \cdot \tilde{\mathsf{C}}_{\mathsf{L}}|^{2} + |\tilde{\mathsf{v}} \cdot \tilde{\mathsf{C}}_{\mathsf{R}}|^{2} \right] \\ \left. \mathsf{Nuclear overlap integrals} \right] \qquad \text{Wilson coefficients}$$

 mu → e conv. for a given nucleus measures C projection.

overlap integrals $[m_{\mu}^{5/2}]$

 For small Z, ~5% errors on overlap integrals.

Ζ

- $mu \rightarrow e$ conv. for a given nucleus measures C projection.
- For small Z, ~5% errors on overlap integrals.
- Complementarity with AI:

Nuclear overlap integrals Wilson coefficients $\tilde{\mathbf{v}} \equiv \left(\frac{\mathrm{D}}{4}, \mathsf{V}^{(\mathrm{p})}, \mathsf{S}^{(\mathrm{p})}, \mathsf{V}^{(\mathrm{n})}, \mathsf{S}^{(\mathrm{n})}\right)$ 0.20 D $V^{(n)}$ 0.15 overlap integrals $[m_{\mu}^{5/2}]$ $V^{(p)}$ $S^{(n)}$ $\theta_{\mathrm{Al}} = \arccos\left(\frac{\tilde{\mathbf{v}} \cdot \tilde{\mathbf{v}}_{\mathrm{Al}}}{|\tilde{\mathbf{v}}||\tilde{\mathbf{v}}_{\mathrm{Al}}|}\right)$ $\bullet S^{(p)}$ 0.10 0.05

20

0.00

0

Mu2e-II 2/22/22

40

60

80

 $\mathsf{R}_{\mu\mathsf{e}} = \frac{32\mathsf{G}_{\mathsf{F}}^2}{\mathsf{\Gamma}_{\text{capture}}} \left| |\tilde{\mathsf{v}} \cdot \tilde{\mathsf{C}}_{\mathsf{L}}|^2 + |\tilde{\mathsf{v}} \cdot \tilde{\mathsf{C}}_{\mathsf{R}}|^2 \right|$

• Conclusions are robust, error in percent regime.

Mu2e-II 2/22/22

Julian Heeck

Isotope dependence of muon DIO

• Near endpoint, improved approximate electron spectrum,

$$\frac{1}{\Gamma_0} \frac{\mathrm{d}\Gamma}{\mathrm{d}E_e} \Big|_{\mathsf{E}_e \sim \mathsf{E}_{\mathrm{end}}} = \mathsf{B} \, \mathsf{E}_{\mathrm{end}}^5 \left(1 - \frac{\mathsf{E}_e}{\mathsf{E}_{\mathrm{end}}}\right)^{5.023},$$

with

$$\mathsf{E}_{\mathrm{end}} \equiv \mathsf{m}_{\mu} - \mathsf{E}_{\mathsf{b}} - \mathsf{E}_{\mathrm{recoil}} + \frac{\alpha \mathsf{m}_{\mu}(\mathsf{Z}\alpha)^2}{\pi} \left(\frac{11}{9} - \frac{2}{3} \log \left[\frac{2\mathsf{m}_{\mu}\mathsf{Z}\alpha}{\mathsf{m}_{\mathsf{e}}} \right] \right).$$

- Endpoint calculated precisely for all isotopes, uncertainty for B around 5% for small Z.

Best second targets at low Z

	spin	NA/%	$E_{\rm end}/{\rm MeV}$	$B/{\rm MeV}^{-6}$	$ au_{\mu}/\mathrm{ns}$	$\Gamma_{\rm cap}/s^{-1}$
$^6_3\mathrm{Li}$	1	7	104.64	1.3×10^{-19}	2175.3	4680
$^7_3\mathrm{Li}$	$\frac{3}{2}$	93	104.78	1.3×10^{-19}	2186.8	2260
$^{27}_{13}\mathrm{Al}$	$\frac{5}{2}$	100	104.97	8.9×10^{-17}	864	$662 imes 10^3$
$^{46}_{22}{ m Ti}$	0	8	104.25	5.2×10^{-16}		
$^{47}_{22}{ m Ti}$	$\frac{5}{2}$	7	104.26	5.3×10^{-16}		
$^{48}_{22}{ m Ti}$	0	74	104.26	$5.3 imes 10^{-16}$	329.3	2.59×10^6
${}^{49}_{22}{ m Ti}$	$\frac{7}{2}$	5	104.26	5.4×10^{-16}		
$_{22}^{50}\mathrm{Ti}$	0	5	104.26	5.4×10^{-16}		
$_{23}^{51}\mathrm{V}$	$\frac{7}{2}$	100	104.15	6.3×10^{-16}	284.5	$3.07 imes 10^6$
$_{24}^{50}\mathrm{Cr}$	0	4	104.04	7.1×10^{-16}	233.7	3.82×10^6
$_{24}^{52}\mathrm{Cr}$	0	84	104.04	7.2×10^{-16}	256.0	3.45×10^6
$^{53}_{24}\mathrm{Cr}$	$\frac{3}{2}$	10	104.05	7.1×10^{-16}	266.6	$3.30 imes 10^6$
$^{54}_{24}\mathrm{Cr}$	0	2	104.05	6.9×10^{-16}	284.8	3.06×10^6

Mu2e-II 2/22/22

Julian Heeck

Motivation for other searches

- Motivate $\mu \rightarrow e X$ as a general process and its signature in Mu2e-II compared to other experiments.
- Motivate µ → e⁺. Difficult to motivate, could not find realistic models.

Summary

- General motivation for LFV
- Specific motivation for Mu2e upgrade
- Summary of DIO results
- Summary of new-physics isotope dependence and identification of good second target
- Motivation for for $\mu \to e~X~\&~\mu \to e^+$

Writing done, will adjust depending on rest of paper.

