Some CO2 emissions calculations for the FCC ee

Ken Bloom, Veronique Boisvert

Introduction

- Want to give an example of CO2 emissions associated with large energy frontier project: chose FCC-ee (2040+)
- Using CDR

FCC ee civil engineering

- Machine tunnel: one of the longest tunnels in the world: 97.75 km in circumference
- 8 km of bypass tunnels
- 18 shafts
- 12 large caverns
- 12 new surface sites
- Excavation: 9 million cubic metres of spoil (mixture of marls and sandstone)

Some figures for FCC ee

Figures

Fig. 4.4. Machine tunnel cross-section in "good" molasse.

Table 4.1. Proposed TBM excavation and lining parameters.

Parameter	TBM tunnel in "good" rock	TBM tunnel in "poor" rock	TBM tunnel in moraines	
Minimum internal diameter (m)	5.5	5.5	5.5	
Characteristic compressive concrete strength for pre-cast concrete, fck (MPa)	50	50	50	
Pre-cast concrete thickness (m)	0.30	0.30	0.45	
Reinforcement density for pre-cast concrete	Steel fibre (50%) and bars at 80 kg/m ³	Steel fibre (50%) and bars at 80 kg/m ³	150 $\rm kg/m^3$	
Gasketed segments	Yes	Yes	Yes	
Cast in-situ concrete thickness (m)	None	0.25	0.25	
Characteristic compressive concrete strength for in-situ concrete, fck (MPa)		40	40	
Reinforcement for in-situ concrete	_	Local reinforcement cages	Local reinforcement cages	
Total radial construction tolerance (m)	0.10	0.10	0.10	
Excavation diameter (m)	6.3	6.8	7.1	

Table 4.2. Example of the main surface structures at a typical experiment site.

Structure name	Structure type	Dimensions $(W \times H \times L)$
Shaft head/detector building	Steel-frame	$25 \times 25 \times 100 \mathrm{m}$
Reception/office building		$10 \times 11 \times 30 \mathrm{m}$
Gas building	Concrete	$15 \times 4 \times 40 \mathrm{m}$
Data centre		$20 \times 10 \times 40 \mathrm{m}$
Workshop		$30 \times 12 \times 15 \mathrm{m}$
Cryogenic plant building	Steel-frame (noise insulated)	$15 \times 12 \times 40 \mathrm{m}$
Ventilation building	Steel-frame	$25 \times 14 \times 40 \mathrm{m}$
Electrical building	Steel-frame	$20 \times 6 \times 80 \mathrm{m}$
Power converter building	Steel-frame	$25 \times 14 \times 40 \mathrm{m}$
Access control building		$10 \times 4 \times 10 \mathrm{m}$

Calculations: bottom up

 Can try to estimate just amount of concrete from main tunnel and get emissions from that

Minimum internal diameter (m)	5.50
Pre-cast concrete thickness (m)	0.30
Excavation diameter (m)	6.30
Cross section using excavation diameter (m^2)	31.17
Exc diam - Min interal diam (m):	0.80
Circumference of main tunnel (m)	97,750.00
Volume of concrete for main tunnel (m^3):	724,734.01
density of concrete (kg/m^3)	2,400.00
	1,739,361,622.
Mass of concrete (kg)	2159
1 US ton = kg	907.20
Mass of concrete in tons (US)	1,917,285.74
Fraction of cement in concrete:	0.15
Mass of cement in tons (US)	287,592.86
1 US ton = 0.907 tonne	0.907

Bill Gates: 1 ton of cement = 1 ton of CO2	
US tons of CO2 for tunnel:	287,592.86
tonnes of CO2 for tunnel:	260,846.72

- 1

Calculations: top down

• Paper looks at full CO2 emissions from building road tunnels, very comprehensive:

https://www.sciencedirect.com/science/article/pii/S0886779820306581?via%3 Dihub

Fig. 1. Schematic overview of the system boundary.

Calculations: top down

Table 1

A schematic overview of the calculation procedure.

	Energy and materials consumption			
Task	Fuel (liters)	Electricity (kWh)	Materials (kg)	Equations
Excavation				
Jumbo	DCJ/833	ECJ		(1), (3)
Platform	DCp1/833	- ²¹²		(1)
Explosive		-	mexp	
Roadheader	-	ECRH		(8)
Breaking hammer	DC _{HBH}		-	(10)
Loading and transportation				
Loader	DCMPC	T	17	(11)
Truck or dumper	$DC_{TLM} + DC_T/833$		-	(12), (14)
Tunnel facilities				
Tunnel ventilation	-	ECTV	-	(3)
Water pumping	(=)	ECWP	-	(3)
Water treatment plant	-	ECTP	-	(3)
Tunnel lighting	-	ECTL	-	(3)
External services	-	ECES	-	(3)
Materials (support/lining)				
Concrete		<u> </u>	Mc	
Steel	The second se		Mat	
Materials transportation	$(Cg_{MatO} + Cg_{MatI})/833$	±	_	(18), (19)
Methane emissions				
Methane emissions	-	-	$s_{met} \times M_r$	(21)
	CO ₂ Total Emissions			
Task	Fuel (kgCO ₂)	Electricity (kgCO ₂)	Materials (kgCO ₂)	Equations
Excavation	$[(DC_J/833)+(DC_{PL}/833)+DC_{HBH}] \times r_D$	$(EC_J + EC_{RH}) \times r_B$	$m_{exp} \times r_{exp}$	(4) to (10)
Loading and transportation	$[DC_{MPC} + DC_{TLM} + (DC_T/833)] \times r_D$		_	(13) to (15)
Tunnel facilities		$(EC_{TV} + EC_{WP} + EC_{TP} + EC_{TL} + EC_{ES}) \times r_{E}$	-	(4)
Materials (support/lining)	[(Cg _{Mat0} /833)+(Cg _{Mat1} /833)] × r _D		$M_c \times r_c + M_{at} \times r_{at}$	(16) to (19)
Methane emissions		<u>2</u>	$s_{met} \times M_r \times r_{met}$	(21)

Calculations: top down

• What matters is the rock mass quality (RMR) and the cross section and length

Table 5 of tunnel paper: very favourable (cross
section of 60 m^2) emissions (kgCO2/m)5,000.00tonnes of CO2 for tunnel using above:488,750.00Different kgCO2/m10,000.00tonnes of CO2 for tunnel using above:977,500.00

Fig. 8. Influence of the RMR and the tunnel section S in the emissions ratio.

Comparisons with other types of construction (for context)

- People have a sense of what a big building is.
- A World Business Council for Sustainable Development <u>report</u> on whole life cycle case studies indicates that "embodied" carbon during construction of buildings (Category A) is 500-600 kgCO₂e/m².
 - \circ $\;$ Let's use 550 for simplicity.

Figure 6: Building System Carbon Framework, WBCSD (2020)¹¹

		BUILDING STAGES						
		PRODUCTS	DUCTS CONSTRUCTION USE END OF L		END OF LIFE	EMISSIONS	BEYOND LIFE	
		A1-A3	A4-A5	B1-B5	B6-B7	с	kgCO ₂ /m ²	
ຊ	Structure Foundation, load-bearing							
AYEI	Skin Windows, roof, insulations							
NGL	Space plan Interior finishes							
	Services Mechanical, electrical, plumbing							
B	Stuff (optional) Furniture and appliances							
	Building carbon emissions							
	Carbon compensation Removals and offset							
B	Stuff (optional) Furniture and appliances Building carbon emissions Carbon compensation Removals and offset							

Comparisons with other types of construction (for context)

- NYC's 1 World Trade Center is 94 stories tall, square footage 3.5M ft²
- Do some math: 178,838,550 kgCO₂e = 197,136 tons CO₂e.
- FCC tunnel is several 1WTCs of carbon impact.
- Is that big or small?

What to write in white paper for that section?

- Very brief reminder of the layout of the FCCee (number of buildings, dimensions of tunnel, etc.)
- Present a few numbers related with the CO2 emissions of the main tunnel
- Give comparisons with other buildings/construction projects
- This is just the main tunnel, but then all the other infrastructure, including materials used for the accelerators, etc.

Recommendations

- New projects need to report on their planned emissions as part of their environmental assessment, so it becomes part of the assessment criteria
 There might be a need for a standard way to calculate those for PP projects
- For long term projects it is important to also consider the evolving societal context
 - Eg demand on the electricity grid now not the same as in 2040, carbon pricing, etc.