
1/25/22

LArTPC simulation and data-processing with Theta

Patrick Green

The University of Manchester

Patrick Green 21/25/22

● Theta supercomputer @ Argonne Leadership
Computing Facility (ALCF)

– 4392 nodes, 64 cores per node

– 281,088 jobs simultaneously

● LArTPC simulation and data processing is
event based:

– large scale processing easily parallelisable

– in principle ideal for running on an
architecture like Theta

● SBND and uBooNE have both been awarded
multiple large allocations on Theta

Theta

Patrick Green 31/25/22

Running LArSoft

● Theta uses Intel Knights Landing Xeon Phi CPUs:

– can run LArSoft out-of-the-box with minimal modification

– however, performance could be improved e.g. by making use
of AVX-512 vector processing

● LArSoft run using standard releases:

– binaries copied to Theta via pullProducts

– run using Singularity containers

– some minor modifications required to avoid FNAL system
specific code – e.g. ifdh, database access

● SBND simulation chain runs without issues on Theta:

– BNB neutrinos, Corsika cosmics and particle gun events

LArSoft on Theta

Producing Samples

Transfer to FNAL

Metadata & SAM

Patrick Green 41/25/22

Producing samples

● Approach to simulation / data-processing:

– sample is split into single (or small number) event jobs

– each job processed on a separate core

– output merged into files of N events

● Use Balsam to manage large scale production:

– workflow management software for ALCF systems

– fully automates splitting, running and merging of events

LArSoft on Theta

Producing Samples

Transfer to FNAL

Metadata & SAM

Patrick Green 51/25/22

Transfer to Fermilab

● Data transfer between Theta and Fermilab using Globus:

– achieved speeds of up to ~1.2 GB/s, may be able to increase

– potential to automate file transfer using Balsam

● Data handling and transfer to tape:

– POMs metadata extractor scripts have been modified to work
with Theta generated files (SBND)

– FTS plugin / dropbox automates extraction of metadata,
declaration to SAM and transfer to tape-backed storage

– Theta produced samples can then be treated identically to
standard production samples by analyzers

LArSoft on Theta

Producing Samples

Transfer to FNAL

Metadata & SAM

Patrick Green 61/25/22

● We have a functioning workflow, now need get
running efficiently at large scale

● This is a significant challenge with LArSoft:

– typical large scale application would internally
utilise many cores / nodes

– LArSoft is single-threaded – forced to run a
separate instance on each individual core

● Leads to major bottlenecks / overheads:

– ~95% efficient at 4 nodes (~250 cores)

– ~30% efficient at 128 nodes (~8000 cores)

Attempting to scale up

Throughput - Before Optimisation

Time [s]

Patrick Green 71/25/22

● Significant bottlenecks identified in two main areas, both resulting
from the need to run separate instances of LArSoft on each core

● Balsam MPI:

– master process struggled to keep > 50% cores occupied at 128 nodes

– resolved at small-mid scale via substantial optimisation of Balsam

– larger scales then achieved by splitting into multiple master processes

● LArSoft I/O:

– LArSoft binaries are read and outputs are written per process, easily
overloading central Lustre file-system

– mitigated by making use of local SSDs available to each node, and
minimising copying to/from central file-system

● Further detail about these issues can be found in SBND DocDb 19928
(copied into backups)

Resolving bottlenecks

Patrick Green 81/25/22

● Scaling tested with using reproducible
testing LArSoft application:

– reconstruction of simulated Corsika
cosmics in SBND (reco1 & reco2)

– sbndcode v09_28_01_02

● Efficient throughput achieved at large scale:

– ~95% efficient at 4096 nodes

– 260,000 simultaneous jobs

– 6.5M cosmics reconstructed in 1 hour

● A huge amount of work has gone into getting
this working, with special thanks to Misha
Salim and Corey Adams at ALCF

Running at large scale

Throughput - After Optimisation

Patrick Green 91/25/22

● Large sample of standard corsika cosmics (SBND):

– 250,000 events, gen –> full reconstruction

– sbndcode v09_09_00_01

● Bulk of sample run in single large scale job:

– 1024 nodes, 3 hours

– 201,653 events completed (~80% of sample)

● Make-up jobs run at 256 and 128 nodes

– 249,790 events completed in total

– ~60 TB total size

● Transferred to FNAL and saved to tape:

– copying took ~14-16 hours @ ~1.2GB/s

– FTS took ~4 days to process files + another ~3-4 days
to finish transferring to tape

Test production sample for SBND

Patrick Green 101/25/22

● Currently forced to run separate instances of LArSoft on each core:

– inefficient – pay large initial cost in initialization of classes, etc. that can be significant fraction of total
run time when generating smaller numbers of events

– adds to stress on file-system, large number of instances all trying to write in uncoordinated way

– more optimal scenario - one instance of LArSoft per node, that internally can run one event per core

● Size of output files challenging:

– I/O requirement overwhelming, e.g. cosmic reconstruction jobs writing ~350TB per hour @ 4096 nodes

– unable to save files during benchmarking, had to immediately delete due to space limitations

● File transfer to FNAL and saving to tape primary bottleneck for production:

– this would need to be sped up substantially to keep up with pace of production on Theta

– alternative – store files at ALCF (on Eagle) and create system for analyzers to access via globus

Issues that remain

Patrick Green 111/25/22

● We’ve achieved efficient running of LArSoft at large scale on Theta (~260,000+ cores)

● Demonstrated end-to-end production workflow for an SBND test sample:

– generation and file processing automated, hence scalable

– first time full scale production with LArSoft has been done on an HPC

● Theta could now be used to generate much larger sample(s) in future campaigns:

– ideal for large computationally demanding samples, e.g. could be used to produce very high-stat
cosmic samples that would be difficult / impossible on the grid

– challenges remain in handling output files, sample transfer from ANL –> FNAL slow for large scales

● Documentation for running SBND production on Theta:

– https://sbnsoftware.github.io/sbndcode_wiki/SBND_at_Theta

Summary/Conclusions

Patrick Green 121/25/22

Back-up

Patrick Green 131/25/22

● Significant fraction (~20%) of Corsika jobs were seg-faulting during calls to ifdh:

– used select random corsikaDB file and to copy to job directory

– seg-fault occurs during calls to calls ifdh::findMatchingFiles, which calls ifdh::lss, which
calls ifdh::pick_proto_path, which calls ifdh::make_canonical then segfaults

● Bypassed this part of IFDH by only passing single CorsikaDB to job (so never calls
ifdh::findMatchingFiles), but still segfaults later in code:

– calls ifdh::fetchInput, which calls ifdh::cp, which calls ifdh::make_canonical, then segfaults

● Segfault seems to be occurring in ifdh::make_canonical, but exact reason was not identified.
Was not able to reliably reproduce.

● Instead added option to CORSIKA_module.cc to pass direct path to file, allowing ifdh to be
avoided entirely (similar to option in GENIE_module.cc):

– https://github.com/LArSoft/larsim/pull/46 (merged Oct 2020)

IFDH seg-faults

https://github.com/LArSoft/larsim/pull/46

Patrick Green 141/25/22

● Data reconstruction jobs require access to calibrations databases (MicroBooNE)

– connects using DatabaseRetrievalAlg in larevt/CalibrationDBI/Providers/

– uses DBFolder to create objects that store a dataset corresponding to an Interval of Validity

– these use libwda to connect to a http server which caches data from the postgres DB so that
the Postgres server is not swamped with connections.

● Once the webserver receives a query (url) it queries the DB for the relevant data set and serves it
as a webpage

– webpage is stored on the webserver so that future, identical, queries can download the
existing webpage without querying the DB.

– but, DB queries use a timestamp to calculate the relevant IOV. The timestamp is in ns, and
therefore unique for each event.

● Running on Theta caused overwhelming number of database connections (>> number from grid
jobs), especially at start of run where all jobs starting up at ~the same time

Database access

Patrick Green 151/25/22

● We tried modifying the DBFolder and DatabaseRetrievalAlg classes to add options that
enabled scaling down the number of DB connections:

– scaling down by a constant factor

– inserting a timestamp manually

● These didn’t solve the problem for us, but could be useful for someone for future debugging

● What worked was using libwda to read a pre-downloaded .html file. Needed to use libwda
v2_27_00

● Code exists in larevt branch: feature/andrzej_dburloverride.

– was not merged at the time, probably needs updating (may be on redmine only?)

Database access

Patrick Green 161/25/22

● Significant bottlenecks were seen in Balsam:

– struggled to keep > ~50% of cores occupied

● Each job has to communicate with the Balsam
master process whenever changing state:

– balsam now has to manage 1 job / core

– designed to run far fewer e.g. 1 job / node

– when it cannot keep up, jobs stuck waiting
on master process

● To separate this from any unquantified
bottlenecks in LArSoft, debugging was done
using a toy matrix multiplication script

Improving efficiency: Balsam

Utilisation

Ideal occupancy ~ 8000 cores

Patrick Green 171/25/22

● Substantial improvements have been made to
Balsam’s efficiency at large scale:

– fixed several bugs affecting running many
processes per node

– non-blocking messaging and job caching

– ZeroMQ messaging instead of Cray-MPI

– minimised logging and split into multiple files

● A huge amount of work has gone into this from
Misha Salim and Corey Adams at ALCF

● These changes enabled near 100% utilisation
at 128 nodes, but still struggles at larger scales

Improving efficiency: Balsam

Utilisation

Patrick Green 181/25/22

● Balsam split into multiple master processes
running on separate nodes:

– master node manages 128 compute nodes

– all master processes communicate with
same central database of jobs

Improving efficiency: Balsam

Utilisation

Patrick Green 191/25/22

● I/O bottleneck can be mitigated by making
use of node local SSDs:

– LArSoft binaries and job inputs copied to
each node via MPI-I/O

– LArSoft forced to run on the SSDs rather
reading/writing to the Lustre file-system

– minimal required final outputs copied to
the central file-system

● Throughput at scale achieved with LArSoft:

– ~95% efficient at 1024 nodes, sbndcode
v09_09_00_01 (note this was old
benchmarking run, see SL8 for newer)

– larger scales should not be an issue,
provided that I/O is carefully managed

Minimising I/O bottleneck

Throughput

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

