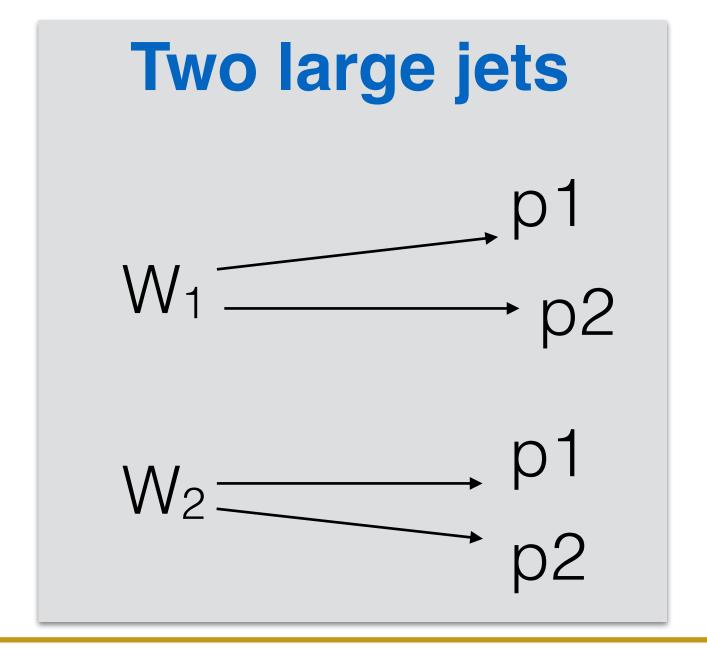
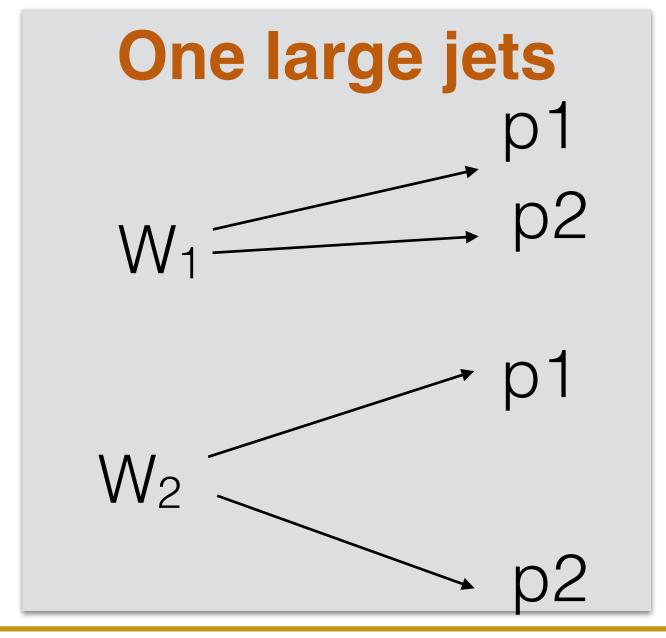
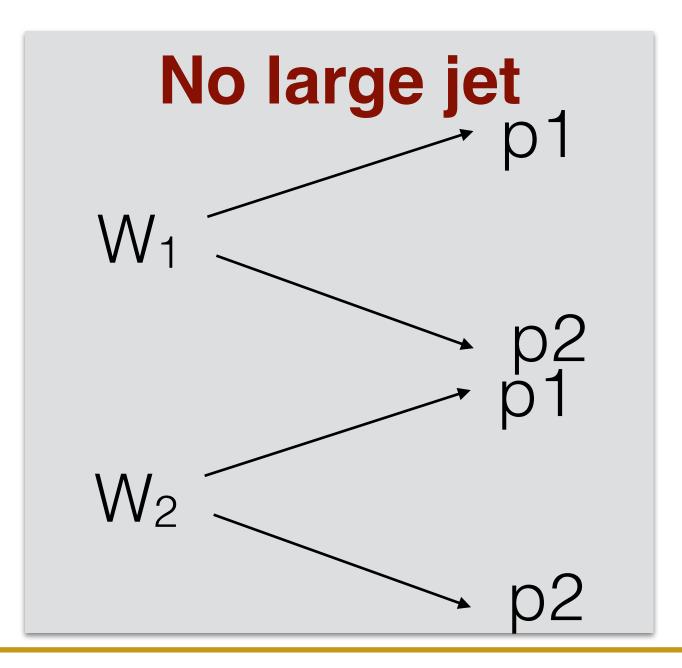
Muon Collider VBS WW analysis Elham E Khoda* *University of Washington Feb 22, 2022


Event selection studies: plan


Final state: Fully hadonic WW + 2 neutrinos


• Do we need separate selections for boosted, semi-boosted and resolved?

Truth-level studies:

- •Initial explorations need to be done using truth-level partons
- •Plot the dR (p1, p2) coming from each W as a function of W momentum/energy

Next step: Preliminary selection

Start with the basic selections applied in this paper (1 TeV ILC): https://arxiv.org/pdf/1607.03030.pdf

Note: the paper has done only truth-level analysis

- 1. $M_{inv}(\bar{\nu}\nu) > 150 \text{ GeV}.$
- 2. $|\cos \theta(W/Z)| < 0.8$ and $p_{\perp}(W/Z) > 150$ GeV.
- 3. $\theta(e) > 15 \text{ mrad and } p_{\perp}(WW) > 45 \text{ GeV}, p_{\perp}(ZZ) > 40 \text{ GeV}.$
- 4. 575 GeV $< M_{inv}(WW) < 800$ GeV, 600 GeV $< M_{inv}(ZZ) < 800$ GeV.

Moving towards reco:

- First step is to find the appropriate jet clustering algorithm and Radius parameter
- •Truth studies should give us some intuition

Stat analysis setup

The EFT-fun tool and some basic config files are kept in the git repo

https://github.com/mumu-multiboson/eft-fun

The tool expects:

- SM signal, INT, QUAD separately
- The limits are generally expressed in the unit of TeV(-4) in publications
- When we set f = 1e-12 —> the unit is GeV(-4)

Table 3: The exclusion limits at 95% CL on each aQGC coefficient, parameterized using the distribution in $m_{W\gamma}$, and listed along with the unitarity bound. All coupling parameter limits are in TeV⁻⁴, while the U_{bound} values are in TeV.

Parameters	Obs. limit	Exp. limit	$U_{\rm bound}$
$f_{\mathrm{M,0}}/\Lambda^4$	[-8.1, 8.0]	[-7.7, 7.6]	1.0
$f_{\mathrm{M,1}}/\Lambda^4$	[-12, 12]	[-11, 11]	1.2
$f_{\mathrm{M,2}}/\Lambda^4$	[-2.8, 2.8]	[-2.7, 2.7]	1.3
$f_{\mathrm{M,3}}/\Lambda^4$	[-4.4, 4.4]	[-4.0, 4.1]	1.5
$f_{\mathrm{M,4}}/\Lambda^4$	[-5.0, 5.0]	[-4.7, 4.7]	1.5
$f_{ m M,5}/\Lambda^4$	[-8.3, 8.3]	[-7.9, 7.7]	1.8
$f_{\mathrm{M,6}}/\Lambda^4$	[-16, 16]	[-15, 15]	1.0
$f_{\mathrm{M,7}}/\Lambda^4$	[-21, 20]	[-19, 19]	1.3
$f_{\mathrm{T,0}}/\Lambda^4$	[-0.6, 0.6]	[-0.6, 0.6]	1.4
$f_{\mathrm{T,1}}/\Lambda^4$	[-0.4, 0.4]	[-0.3, 0.4]	1.5
$f_{ m T,2}/\Lambda^4$	[-1.0, 1.2]	[-1.0, 1.2]	1.5
$f_{ m T,5}/\Lambda^4$	[-0.5, 0.5]	[-0.4, 0.4]	1.8
$f_{ m T,6}/\Lambda^4$	[-0.4, 0.4]	[-0.3, 0.4]	1.7
$f_{\mathrm{T,7}}/\Lambda^4$	[-0.9, 0.9]	[-0.8, 0.9]	1.8

Example CMS paper:

https://arxiv.org/pdf/2008.10521.pdf

So, currently the plan is to generate all the INT and QAUD setting f = 1e-12 and get the limits directly in the unit of TeV (-4)