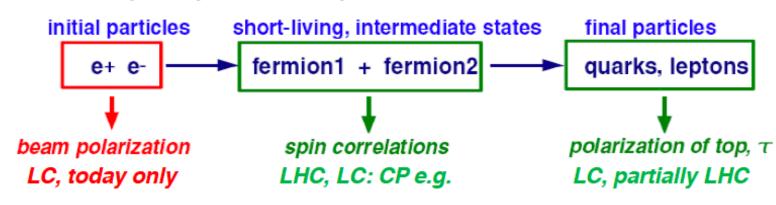
Physics Case and ILC polarized Positron Source Plans

- Motivation
- Physics cases for polarized beams
- Status e+ sources at linear collider
- Conclusions

LINEAR COLLIDER COLLABORATION

Snowmass Polarized Positron Workshop 22

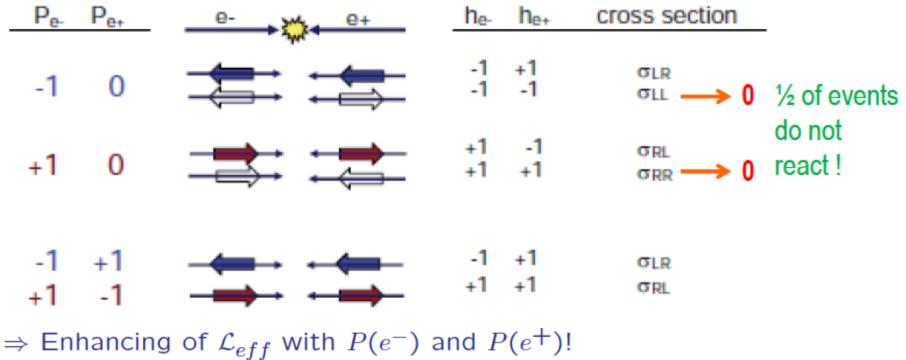
G. Moortgat-Pick


1

Required features at LHC & ILC

- ⇒ In order to reveal the structure of the underlying (new) physics:
 - * high energy desirable to reach the scale of new physics
 - * high luminosity needed to get sufficient statistics
 - * high level of experimental flexibility needed
 - high precision measurements needed to get access to the quantum structure

- ⇒ Spin and polarization physics is important
 - access to quantum properties, structure of couplings, etc.
- ➡ How to exploit spin effects in particle reactions?



Statistical arguments

Effective polarization

$$P_{eff} := (P_{e^-} - P_{e^+})/(1 - P_{e^-} P_{e^+})$$

= $(\# LR - \# RL)/(\# LR + \# RL)$

• Fraction of colliding particles $\mathcal{L}_{eff}/\mathcal{L} := \frac{1}{2}(1 - P_{e^-}P_{e^+}) = (\#LR + \#RL)/(\#all)$

Statistical arguments

• Effective polarization

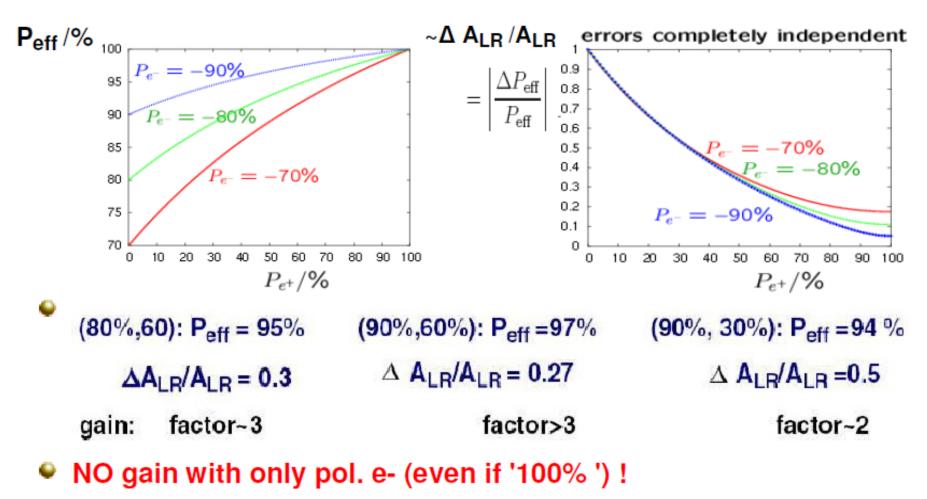
$$P_{eff} := (P_{e^-} - P_{e^+})/(1 - P_{e^-} P_{e^+})$$

= $(\#LR - \#RL)/(\#LR + \#RL)$

• Fraction of colliding particles $\mathcal{L}_{eff}/\mathcal{L} := \frac{1}{2}(1 - P_{e} - P_{e}) = (\#LR + \#RL)/(\#all)$

Colliding particles:

	RL	LR	RR	LL	P_{eff}	$\mathcal{L}_{eff}/\mathcal{L}$
$P(e^{-})=0,$	0.25	0.25	0.25	0.25	0.	0.5
$P(e^+) = 0$						
$P(e^{-})=-1,$	0	0.5	0	0.5	-1	0.5
$P(e^+) = 0$						
$P(e^{-}) = -0.8,$	0.05	0.45	0.05	0.45	-0.8	0.5
$P(e^+) = 0$						
$P(e^{-}) = -0.8,$	0.02	0.72	0.08	0.18	-0.95	0.74
$P(e^+) = +0.6$						


 \Rightarrow Enhancing of \mathcal{L}_{eff} with $P(e^{-})$ and $P(e^{+})!$

Snowmass Polarized Positron Workshop 22

Impact of P(e+)

Statistics

And gain in precision

Main benefits of simultaneous e+polarization?

- Better Statistics: Less running time/operation cost for same physics
 - higher rates, lower background, higher analyzing power for chosen channels
- Lower Systematics
 - key role for reduction of systematics originating from polarization measurement

More Observables

 Four distinct data-sets: opposite-site polarization collisions plus like-sign configuration —> unique feature of ILC (including transversely but also unpolarized configurations!)

Why are polarized beams required?

- Important issue: measuring amount of polarization
 - limiting systematic uncertainty for high statistics measurements
 - Compton polarimeters (up- /downstream): envisaged uncertainties of ΔP/P=0.25%
- Adding positron polarization required:
 - Substantial enhancement of eff. luminosity and eff. polarization and independent observables
 - handling of limiting systematics and access to in-situ measurements
 - more observables available including options of transversely polarized beams
 - Windows to new physics already at low energy!
- Physics impact: Higgs-Physics, WW/Z/top-Physics, New Physics

Literature: polarized e+e- beams at a LC (only a few examples)

- LCC-Physics Group: 'The role of positron polarization for the initial 250 GeV stage of ILC', arXiv: 1801.02840
- G. Moortgat-Pick et al. (~85 authors) : `Pol. positrons and electrons at the LC', Phys. Rept. 460 (2008), hep-ph/0507011
- G. Wilson: `Prec. Electroweak measurements at a Future e+e- LC', ICHEP2016, R. Karl, J. List, LCWS2016, 1703.00214
- many more (only few examples): 1206.6639, 1306.6352 (ILC TDR), 1504.01726, 1702.05377, 1908.11299,2001.03011, ...
- G. Moortgat-Pick, H. Steiner, `Physics opportunities with pol. e- and e+ beams at TESLA, Eur.Phys.J direct 3 (2001)

• T. Hirose, T. Omori, T. Okugi, J. Urakawa, Pol. e+ source for the LC, JLC, Nucl. Instr. Meth. A455 (2000) 15-24

Snowmass Polarized Positron Workshop 22

G. Moortgat-Pick

Why are polarized beams required?

- Please remember: excellent e- polarization ~78% at SLC:
 - led to best measurement of sin²θ=0.23098±0.00026 on basis of L~10³⁰ cm⁻²s⁻¹
- Compare with results from unpolarized beams at LEP:
 - sin²θ=0.23221±0.00029 but with L~10³¹cm⁻²s⁻¹
- ➡Polarization essential for suppression of systematics!

- LCC-Physics Group: 'The role of positron polarization for the initial 250 GeV stage of ILC', arXiv: 1801.02840
- G. Moortgat-Pick et al. (~85 authors) : `Pol. positrons and electrons at the LC', Phys. Rept. 460 (2008), hep-ph/0507011
- G. Wilson: `Prec. Electroweak measurements at a Future e+e- LC', ICHEP2016, R. Karl, J. List, LCWS2016, 1703.00214
- many more (only few examples): 1206.6639, 1306.6352 (ILC TDR), 1504.01726, 1702.05377, 1908.11299,2001.03011, ...
- G. Moortgat-Pick, H. Steiner, `Physics opportunities with pol. e- and e+ beams at TESLA, Eur.Phys.J direct 3 (2001)

T. Hirose, T. Omori, T. Okugi, J. Urakawa, Pol. e+ source for the LC, JLC, Nucl. Instr. Meth. A455 (2000) 15-24
Snowmass Polarized Positron Workshop 22
G. Moortgat-Pick

Polarization measurement

- Compton polarimeters: up- and downstream
 - envisaged uncertainties of ΔP/P=0.25% (at polarimeters!)
 - But that's is not enough for IP!
- Use collision data to derive luminosity-weighted polarization
 - single W, WW, ZZ, Z, etc.: combined fit

 $P_{e^{\pm}}^{-} = -|P_{e^{\pm}}| + \frac{1}{2}\delta_{e^{\pm}} \qquad \qquad P_{e^{\pm}}^{+} = -|P_{e^{\pm}}| + \frac{1}{2}\delta_{e^{\pm}}$

• helicity reversal is important

Karl, List,1703.00214

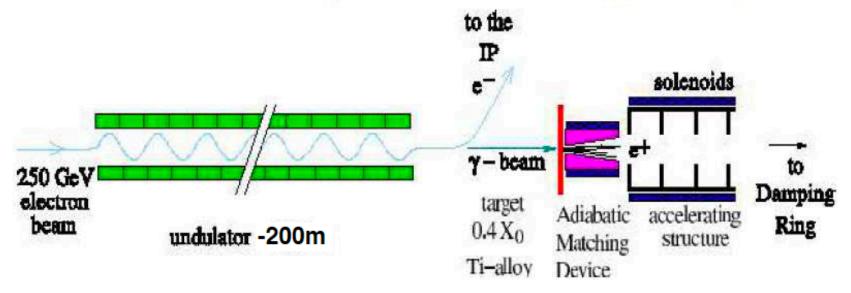
- non-perfect helicity-reversal can be compensated
- 0.1% accuracy in ΔP/P is achievable at IP!
- NOT achievable without Pe+!

Remember: even if no Pe+ (SLC! dedicated experiment at SLACs Endstation A), the $P_{e+}\sim 0.0007$ had to be derived a posteriori for physics reason!

Snowmass Polarized Positron Workshop 22

TDR baseline layout of the e+ source

The polarized e+ source scheme


G. Alexander et al., NIMA 610 (2009), G. Alexander et al., Phys.Rev.Lett.100 (2008)

• ILC e+ beam parameters (nominal luminosity)

Number of positrons per bunch at IP	2×10 ¹⁰	
Number of bunches per pulse	1312	
Repetition rate	5 Hz	That's about a
Positrons per second at IP	1.3×10 ¹⁴	factor 100 more
- Required positron vield: $Y = 1.5e + 100$	e- at damping ri	<i>compared to SLC!</i>

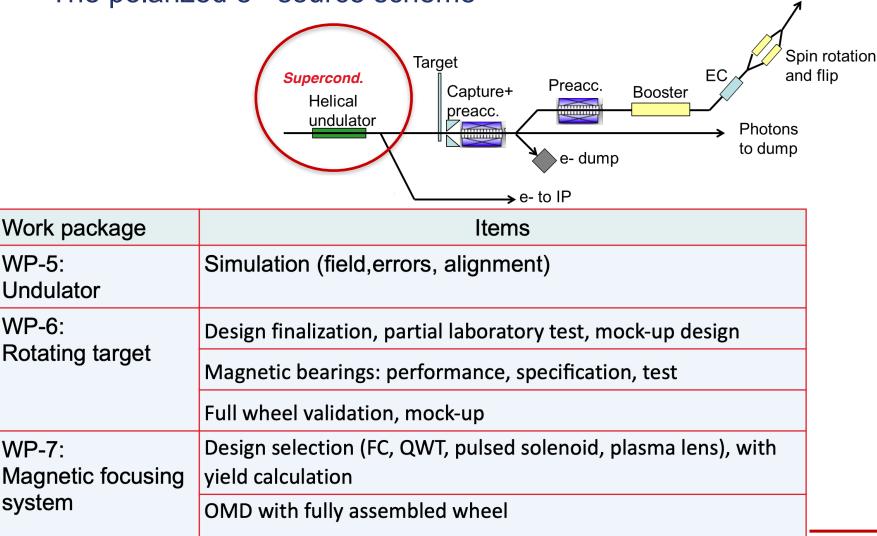
Short overview: e⁺ sources at ILC

- Conventional source: e- scattering in target -> pair production -> e+
- Undulator-based scheme: polarized e+ via circularly polarized photons

- deviation of e- beam via helical magnetic field in undulator
- radiated circularly polarized photons onto thin target, pair production
- e+ yield and polarization depends on beam energy and undulator length

Short overview: e⁺ sources at ILC

	SLC	ILC (RDR)	CLIC
e+/bunch	3.5x10 ¹⁰	2x10 ¹⁰	0.64x10 ¹⁰
Bunches/ pulse	1	2685	312
Pulse rep rate	120 ^s	5	50
e+/s	0.042x10 ¹⁴	2.6x10 ¹⁴	1x10 ¹⁴

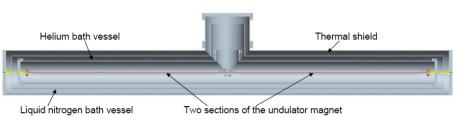

in general: demanding challenges for the e+ source!

Beam polarization status: at cms=250 GeV: P(e⁻)~80-90%, P(e⁺)~30% =350,...,500 GeV: P(e⁻)~80-90%, P(e⁺)=40% (60% with collimator)

(with chosen undulator parameters for cms=500 GeV)

TDR baseline layout of the e+ source

• The polarized e+ source scheme



Snowmass Polarized Positron Workshop 22

G. Moortgat-Pick

Undulator technology - Status

- Parameters
 - Undulator period, $\lambda_{\rm U} = 11.5$ mm
 - Undulator strength K \leq 0.92 (B \leq 0.86T); K ~ B $\cdot\lambda_{\mu}$
 - Undulator aperture 5.85mm
- 4m prototype built and tested (UK)
 - Cryomodule, contains 2 undulator modules of 1.75m length each

- ILC TDR (2013):
 - Max 231m active undulator length available (132 undulator modules in 66 cryomodules]

D.Scott et al., Phys. Rev. Lett. 107,

174803 (2011)

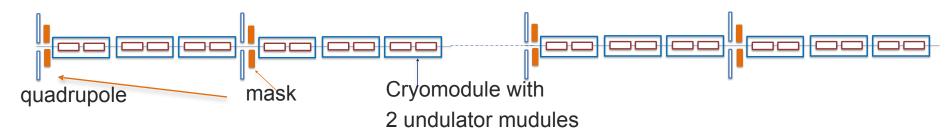
- Quadrupoles every 3 cryomodules \rightarrow total length of undulator system is 320m

Progress since TDR

- Detailed ILC undulator simulations performed:
 - realistic fields, masks and power deposition, misalignments
- Undulator operation: experience with long undulators
 - XFEL: 91 undulators with 5m length each
 - energy loss due to particle loss negligible small (unmeasurable)
 - beam alignment up to 10-20 microns for 200 m (undulator length), remeasured every 6 months
 - during beam operation: beam trajectory controlled better than 3 micron with both slow and fast feedback systems
- Stable operation and alignment experience
 - Beam requirements at XFEL more challenging than at ILC due to FEL requests of photons
 - Tolerances of IIC undulator more relaxed than for XFEL!
- Result: no operation&alignment issues for ILC undulator

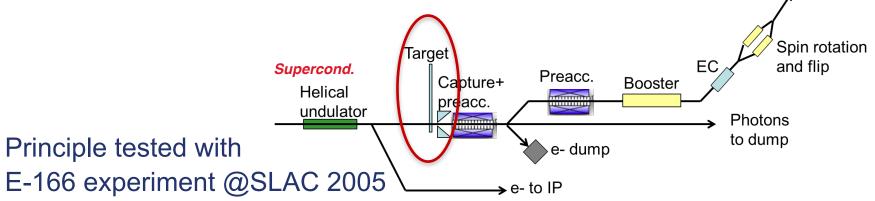
Snowmass Polarized Positron Workshop 22

K. Alharbi, PhD 2022 S. Riemann, GMP


> W. Decking/XFEL LCWS21

WP5 Undulator: Simulation (field errors, alignment)

Alharbi, Thesis 22

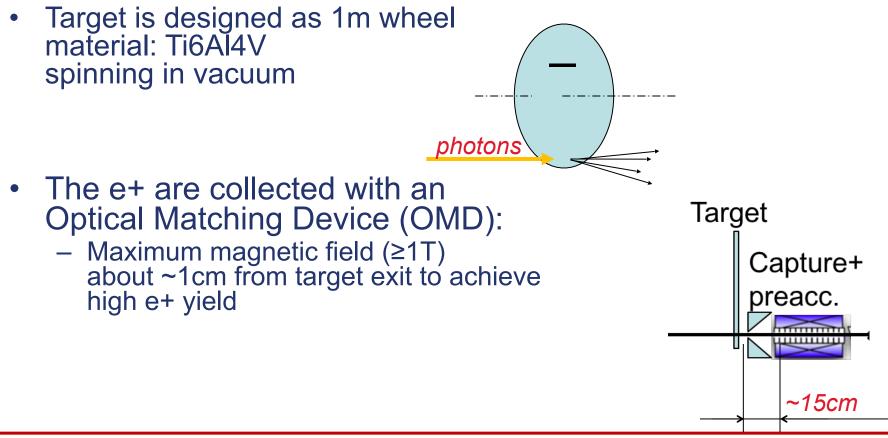

- Misalignments:
 - beam spot increases slightly, yield decreases slightly (see A.Ushakov, AWLC18)
- Realistic undulator with B field and period errors
 - Beam spot size increases slightly
 - Polarization decreases slightly
- Synchrotron radiation deposit in undulator walls
 - Masks protect wall to levels below 1W/m
 - ILC250: power deposition in 'last' mask near undulator exit: ~300W

- Finalize undulator line (quadrupoles, masks,...)
- Simulation of e+ yield and polarization including realistic undulator tolerances and misalignment

TDR baseline layout of the e+ source

• The polarized e+ source scheme

G. Alexander et al., NIMA 610 (2009), G. Alexander et al., Phys.Rev.Lett.100 (2008)


• ILC e+ beam parameters (nominal luminosity)

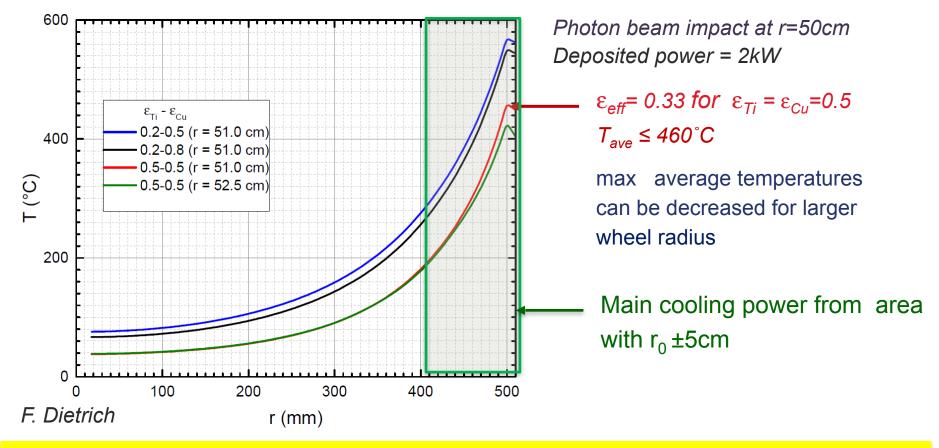
Number of positrons per bunch at IP	2×10 ¹⁰	
Number of bunches per pulse	1312	
Repetition rate	5 Hz	That's about a
Positrons per second at IP	1.3×10 ¹⁴	factor 100 more
- Required positron vield: $Y = 1.5e + 100$	e- at damping ri	compared to SLC!

The positron target

- Is located ~240m downstream the undulator end
- 62 kW photon beam ⇔ about few 10¹⁶ photons/second
- Only few % of the photon beam power is deposited in the target

Cooling of the target wheel

- Water cooling (TDR design) does not work
- Few kW heat deposition can be removed with thermal radiation:
 - heat radiates from spinning target to a stationary water-cooled cooler
 Side view cutout e+ target


$$P \sim \sigma \epsilon A \left(T_{radiator}^4 - T_{cool}^4 \right)$$

 ϵ = effective emissivity

- Ti alloys have low thermal conductivity ($\lambda = 0.06 - 0.15$ K/cm/s)
 - heat propagation ~ 0.5cm in 7sec (load cycle)
 - heat accumulates in the rim near to beam path

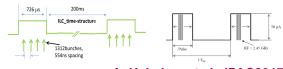
Temperature distribution in target

Average temperature in Ti6Al4V wheel as function of radius r for different surface emissivity of target and cooler (Cu); Target wheel assumed as disk

Studies (FLUKA, ANSYS) show that such spinning disk stands heat and stress load

Progress since TDR: Target material

- Target Material Tests at Mainz Microtron (MAMI) using e-
 - Goal: electron-beam on ILC target materials, generating cyclic load with same/ even higher PEDD at target than expected at ILC
 - Several successful tests performed on Ti-Alloy
 - Further tests foreseen in 22 with other materials and higher instantaneous load
 - Sophisticated target analyses with laser scanning also synchrotron diffraction methods performed


Target before and after radiation:

 α/β phase transitions in Ti-6Al-4V:

Results of diffraction method:

- used in transmission as well as reflection geometry
- Phase transitions between $\alpha\text{-}$ and $\beta\text{-}phase$ in Ti-alloy observed
- only for 'cw-mode target' phase transition significant
- Targets applicable for future HEP experiments
- Results published in Bachelor thesis

Target Tests: ILC e+ target MAMI Beam particles photons electrons Average energy 7.5...40MeV 14 MeV, 3.5MeV 50-350K ∆T_{max} /pulse 60-120K Max energy deposition density in target ~50-200J/g ~60J/g Eff. pulse length on material 25-55µs 1-5ms Eff. pulse rep rate on material 0.17 Hz 1Hz ...120Hz Displacement per atom (dpa) ~0.3-0.5 per year ~0.33/24h (14MeV) ~0.22/24h (4MeV)

A. Ushakov et al., IPAC2017

T. Lengler, BThesis 2020

• Result: ILC undulator target will stand the load

Snowmass Polarized Positron Workshop 22

G. Moortgat-Pick

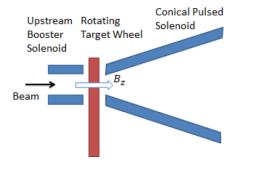
T Longlor PThesis 202

Progress since TDR

- Target tests at MAMI
 - Demonstrate the robustness of the target material against cyclic load at high temperatures
 - Result: No target damage for ILC undulator target
- Cooling of target wheel
 - The initial TDR-Undulator target (water cooled spinning in vacuum) was revisited:
 - Cooling by thermal radiation, thus avoiding a vacuum tight rotating seal (organic oil and iron powder).
 - Wheel completely, hermetically sealed in UHV-vacuum.
 - Rotating axis supported by contactless, maintenance free magnetic bearings.

Talk C. Tenholt, later

B_{max} [T]


OMD: Pulsed solenoid

Idea:

Pulsed B field at target

- increases e+ yield
- Increases load at target only slightly

P. Sievers, POSIPOL18, LCWS19

0.5 1 1.5	2 2.5 3
Btarget	<u></u>
Peak magnetic field	5.2 T
Field at target	$3 \mathrm{T}$
Field at target with upstream booster coil	$4\mathrm{T}$
Stress due to magnetic field	$\leq 40 \mathrm{MPa}$
Beam induced effects at entrance of the solenoid, $r=1 \text{ cm}$	PEDD $13 \mathrm{J/g}$
Average beam power deposition	$600\mathrm{W/cm^3}$
Thermal stress	$\approx 100 \mathrm{MPa}$
displacement per atom (dpa)	$0.15/5000{ m h}$

1.7

1.6

Lie [-a] 1.5 1.4 1.3

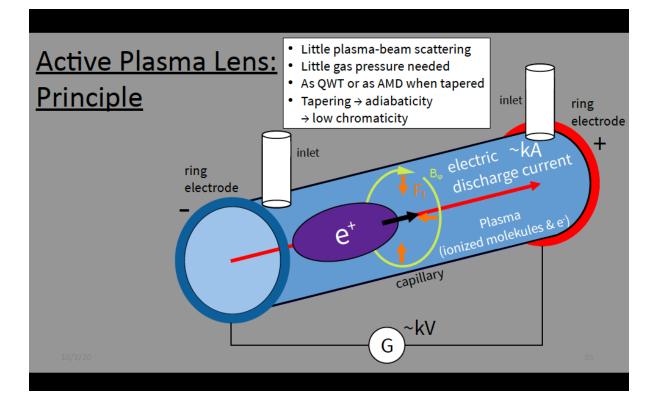
1.2

Current detailed simulation (M. Mentink 1/21, G. Loisch&C. Tenholt 21/22):

- with COMSOL including Eddy currents, dep. power, masks etc.
- Yield (M. Fukuda, 10/21): matches ILC requirements!

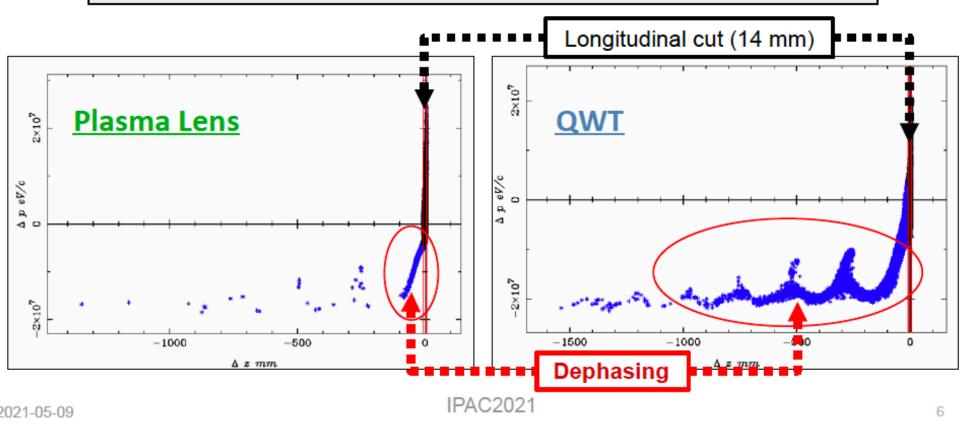
Fukuda/Loisch/Sievers/Tenholt, ILCX 10/⁽21

Snowmass Polarized Positron Workshop 22



Further OMD Design: Plasma Lens

Idea: Plasma Lenses


K. Flöttmann, C. Lindström

- increases e+ yield but Increases load at target only slightly
- advantages in matching aspects

Dephasing Advantage of the Plasma Lens

The azimuthal magnetic field of the plasma lens leads to a sinusoidal trajectory (helical for QWT), which results in an effectively shorter path and therefore smaller longitudinal spread, the so called dephasing.

M. Formela, N. Hamann, IPAC21

<u>Optimization Results of</u> Tapered Active Plasma Lens as OMD

Simulations vith ASTRA

41.7% captured e⁺ within DR energy acceptance of .75% (14 mm long. Cut) \rightarrow ~50% improvement over ILC's current proposed OMD (QWT) design

	Symbol	Optimal Value	
PL Length	Zmax	6 cm	
Opening Radius	R ₀	3.8 mm	
Tapering Order	n	1	
Tapering Strength	g	136 m ⁻¹	
PL-SWT distance	d	1 cm	
SWT Phase	φ 0	220°	
Tapered PL cavity profile: $R(z) = R_0(1+gz)^n$			

<u>Optimized Parameters at I₀ = 3000 A</u>

Captured Yield Stability of the Opimum

			Captured Yield Deviation for deviations in optimized parameter by	
	Parameter	Symbol	-10% offset	+10% offset
	PL Length	Z _{max}	-0.3% yield	-0.2% yield
	Opening Radius	R ₀	-0.1% yield	-1.1% yield
	Tapering Strength	g	-0.2% yield	-0.3% yield
	Current strength	lo	-1.5% yield	+1.2% yield
	PL-SWT distance	d	+0.2% yield	-0.2% yield
	SWT Phase	φo	-0.5% yield	-0.4% yield
IPA	IPAC2021 5			

2021-05-09

➡funded project 21-24, started at Hamburg, see talk G. Loisch

Snowmass Polarized Positron Workshop 22

G. Moortgat-Pick

5

Summary

- Polarized e[±] required to fulfill physics promises!
- Undulator-based positron source mature design
 - offers in addition polarized e+ !!!
- Lots of progress since ILC TDR
 - Operating experiences XFEL
 - Target tests
- News on OMD
 - Pulsed solenoid design
 - Plasma Lenses (new technology)
- More collaborators welcome!

• all WP, but in particular for WP6! Active platform for mature design and new technologies!

Snowmass Polarized Positron Workshop 22

G. Moortgat-Pick

Further Physics Examples

Case	Effects	Gain
SM:		
top threshold	Improvement of coupling measurement	factor 3
$tar{q}$	Limits for FCN top couplings reduced	factor 1.8
CPV in $t\bar{t}$	Azimuthal CP-odd asymmetries give	$P_{e^{-}}^{T}P_{e^{+}}^{T}$ required
	access to S- and T-currents up to 10 TeV	
W^+W^-	Enhancement of $\frac{S}{B}$, $\frac{S}{\sqrt{B}}$	up to a factor 2
	TGC: error reduction of $\Delta \kappa_{\gamma}$, $\Delta \lambda_{\gamma}$, $\Delta \kappa_Z$, $\Delta \lambda_Z$	factor 1.8
	Specific TGC $\tilde{h}_{+} = \text{Im}(g_{1}^{\text{R}} + \kappa^{\text{R}})/\sqrt{2}$	$P_{e^{-}}^{T}P_{e^{+}}^{T}$ required
CPV in γZ	Anomalous TGC $\gamma\gamma Z$, γZZ	$P_{e^{-}}^{\mathrm{T}}P_{e^{+}}^{\mathrm{T}}$ required
HZ	Separation: $HZ \leftrightarrow H\bar{\nu}\nu$	factor 4 with RL
	Suppression of $B = W^+ \ell^- \nu$	factor 1.7
SUSY:		
$\tilde{e}^+\tilde{e}^-$	Test of quantum numbers L, R	P_{e^+} required
	and measurement of e^{\pm} Yukawa couplings	
$\tilde{\mu}\tilde{\mu}$	Enhancement of S/B , $B = WW$	factor 5-7
	$\Rightarrow m_{\tilde{\mu}_{L,R}}$ in the continuum	
HA , $m_A > 500 \text{ GeV}$	Access to difficult parameter space	factor 1.6
$\tilde{\chi}^+ \tilde{\chi}^-, \tilde{\chi}^0 \tilde{\chi}^0$	Enhancement of $\frac{S}{B}$, $\frac{S}{\sqrt{B}}$	factor 2-3
	Separation between SUSY models,	
	'model-independent' parameter determination	
CPV in $\tilde{\chi}_i^0 \tilde{\chi}_i^0$	Direct CP-odd observables	$P_{e^{-}}^{\mathrm{T}} P_{e^{+}}^{\mathrm{T}}$ required
RPV in $\tilde{\nu}_{\tau} \rightarrow \ell^+ \ell^-$	Enhancement of S/B , S/\sqrt{B}	factor 10 with LL
	Test of spin quantum number	

Snowmass Polarized Positron Workshop 22

Further Physics Examples

ED:		
$G\gamma$	Enhancement of S/B , $B = \gamma \nu \bar{\nu}$,	factor 3
$G\gamma \ e^+e^- \rightarrow f\bar{f}$	Distinction between ADD and RS modes	$P_{e^-}^{\mathrm{T}}P_{e^+}^{\mathrm{T}}$ required
Z':		
$e^+e^- \to f\bar{f}$	Measurement of Z' couplings	factor 1.5
CI:		
$e^+e^- \rightarrow q\bar{q}$	Model independent bounds	P_{e^+} required
Precision measurem	ents of the Standard Model at GigaZ:	
Z-pole	Improvement of $\Delta \sin^2 \theta_W$	factor 5–10
	Constraints on CMSSM space	factor 5
CPV in $Z \rightarrow b\bar{b}$	Enhancement of sensitivity	factor 3

- Many new physics examples
- Beam polarization always provides 'physics gain'
- Crucial sensitivity to coupling structures
- Still further new studies ongoing......

• More concrete: If only LR and RL contributions: only 50 % of collisions useful

effective luminosity: $L_{\text{eff}}/L = \frac{1}{2}(1 - P_{e^-}P_{e^+})$

This quantity = the effective number of collisions, can only be changed with P_{e-} and $P_{e+:}$

here: With $\pm 80\%$, $\pm 30\%$, the increase is 24% With $\pm 80\%$, $\pm 60\%$, the increase is 48% With $\pm 90\%$, $\pm 60\%$, the increase is 54%

In other words: no P_{e+} means 24% more running time (!) and 10% loss in P_{eff} = 10% loss in analyzing power!

Quite substantial in Higgs strahlung and electroweak 2f production !

L_{eff} and P_{eff}: further example

• Charged currents, i.e. t-channel W- or v-exchange (A_{LR}=1):

$$\sigma(\mathcal{P}_{e^-}, \mathcal{P}_{e^+}) = 2\sigma_0(\mathcal{L}_{\text{eff}}/\mathcal{L})[1 - \mathcal{P}_{\text{eff}}]$$

In other words: *no P_{e+} means 30% more running time needed* !

Quite substantial in Higgs production via WW-fusion!

Statistics Suppression of WW and ZZ production

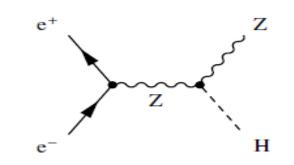
WW, ZZ production = large background for NP searches!

 W^- couples only left-handed:

 \rightarrow WW background strongly suppressed with right polarized beams!

Scaling factor = $\sigma^{pol}/\sigma^{unpol}$ for WW and ZZ:

$P_{e^-} = \mp 80\%, P_{e^+} = \pm 60\%$	$e^+e^- \rightarrow W^+W^-$	$e^+e^- \rightarrow ZZ$
(+0)	0.2	0.76
(-0)	1.8	1.25
(+-)	0.1	1.05
(-+)	2.85	1.91


'No lose theorem':
scaling factors for
signals&background

	S	В	S/B	S/\sqrt{B}
Example 1	$\times 2$	$\times 0.5$	$\times 4$	$\times 2\sqrt{2}$
Example 2	$\times 2$	$\times 2$	Unchanged	$\times \sqrt{2}$

Process: Higgs Strahlung

- $\sqrt{s}=250$ GeV: dominant process
- Why crucial?
 - allows model-independent access!

- Absolute measurement of Higgs cross section σ (HZ) and g_{HZZ} : crucial input for all further Higgs measurement!
- Allows access to H-> invisible/exotic
- Allows with measurement of Γ^{h}_{tot} absolute measurement of BRs!
- If no P(e+): 20% longer running time!.....~few years and less precision!

Higgs Sector @250 GeV

• What if no polarization / no P_{e+} available?

− Higgsstrahlung dominant σ_{pol} /σ_{unpol} ~(1-0.151 P_{eff}) * L_{eff}/L

With $P_{e+}=0\%$: $\sigma_{pol} / \sigma_{unpol} \sim 1.13$ With $P_{e+}=30\%$ $\sigma_{nol} / \sigma_{unpol} \sim 1.51$ (about 33% increase comp. to 0%)

Background: mainly ZZ (if leptonic), WW (if hadronic)

> Loss if no $P_{e_{t}}$:	~20%	~ factor 2
	1. 22 (+ ,-)	3.98 (+,-)
– S/√B:	0.99 (+,0)	1.95 (+,0)
	1.20 (+,-)	12.6 (+,-)
- S/B :	1.14 (+,0)	4.35 (+,0)

Physics Panel used both beams polarized! P_{e+} is important ... 15

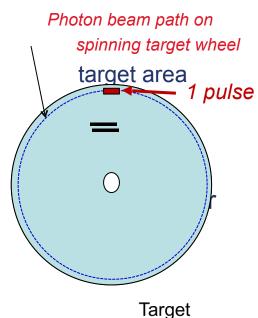
Snowmass Polarized Positron Workshop 22

G. Moortgat-Pick

Caution: helicity flipping is required

• Gain in effective lumi lost if no flipping available

- 50% spent to 'inefficient' helicity pairing (most SM, BSM)
- Similar flip frequency for both beams ~ pulse-per-pulse
- Gain in ΔP_{eff} remains, but flipping required to understand:
 - Systematics and correlations P_e x P_{e+}
- Spin rotator before DR and spinflipper in set-up for baseline!
 done!



The positron target

- Photon beam hits wheel at 1m diameter, spinning in vacuum with 2000rpm (100m/s tangential speed) → distribute the heat load
 - One pulse with1312 (2625) bunches occupies ~7 (~10)cm
 - Every ~7-8sec load at same target position
 - in 5000h roughly 2.5×10⁶ load cycles at same
- ILC250, GigaZ: E(e-) = 125GeV
 - Photon energy is O(7.5 MeV);
 - target thickness of 7mm to optimize deposition and e+ yield
- Target cooling

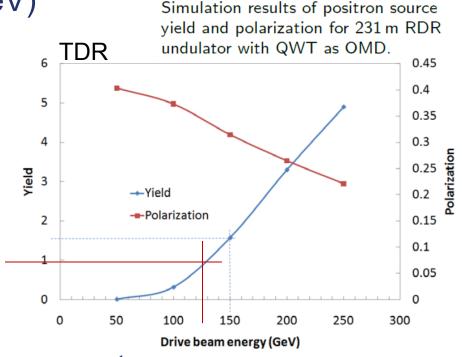
- S. Riemann, P.Sievers
- T⁴ radiation from spinning wheel to stationary water cooled cooler
 - Peak temp in wheel ~550°C for ILC250, 1312bunches/pulse
 ~500°C for GigaZ, 1312bunches/pulse

assuming the wheel is a full Ti alloy disk (~simple design solution).

Capture+

preacc.

Rotating wheel design


- Material:
 - material tests with load similar as expected at ILC were done using the e- beam at Microtron in Mainz → Ti alloy will survive load cycles for ≥1 year
 - To be continued to study strength against high cyclic peak load at high T (luminosity upgrade)
 - Include alternative alloys with high T and high strength
- Target geometry
 - Optimize temperatures, stresses, thickness etc. while maintaining the required e+ yield
 - Study influence of eddy currents (heating, drag forces) caused by B field at target from OMD
 - Studies to be done with ANSYS, COMSOL,...
- Lab test of target sector to confirm cooling performance
- Drive and bearing
 - Magnetic bearing for vacuum-tight spinning wheel

Positron yield

- Electron energy 125GeV (126.5GeV to compensate loss in undulator)
- Photon energy is O(7.5 MeV)

 yield is ~1e+/efor E(e-) = 125GeV

Need to optimize/improve the e+ capture

Upgrade to higher energies

No problem for nominal luminosity: PEDD and max temperatures do not exceed limit, target thickness could be optimized

Electron beam energy	GeV	126,5	175	250	
Active undulator length	m	231	147		
Undulator K		0.85	0.66	0.45	
Photon yield	γ/e-	393	157	76.1	
Photon energy (1st harmonic)	MeV	7.7	17.6	42.8	
Average photon beam power	kW	62.6	45.2	42.9	
Distance target – middle undulator	m	401	500		
Target (Ti6Al4V)thickness	mm	7	14.8		
Average power deposition in target	kW	1.94	3.3	2.3	
Photon beam spot size on target (σ)	mm	1.2	0.89	0.5	
Peak Energy Deposition Density (PEDD) in spinning target per pulse		61.0	42.4	45.8	
Polarization of captured positrons	%	29.5	30.8	24.9	

Snowmass Polarized Positron Workshop 22

G. Moortgat-Pick