

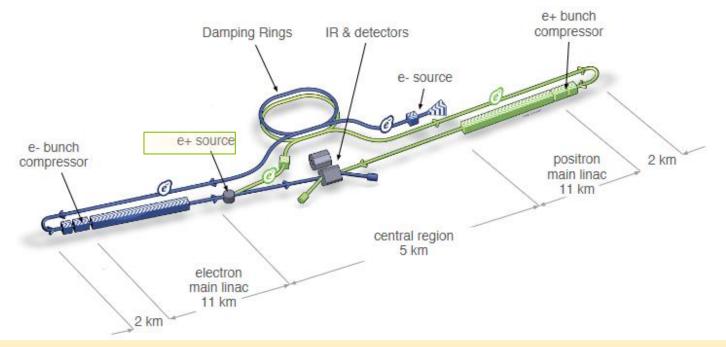
SUPERCONDUCTING UNDULATORS FOR POLARIZED POSITRON SOURCES

YURY IVANYUSHENKOV Advanced Photon Source Argonne National Laboratory

Snowmass Polarized Positron Sources Workshop, March 1, 2022

SCOPE

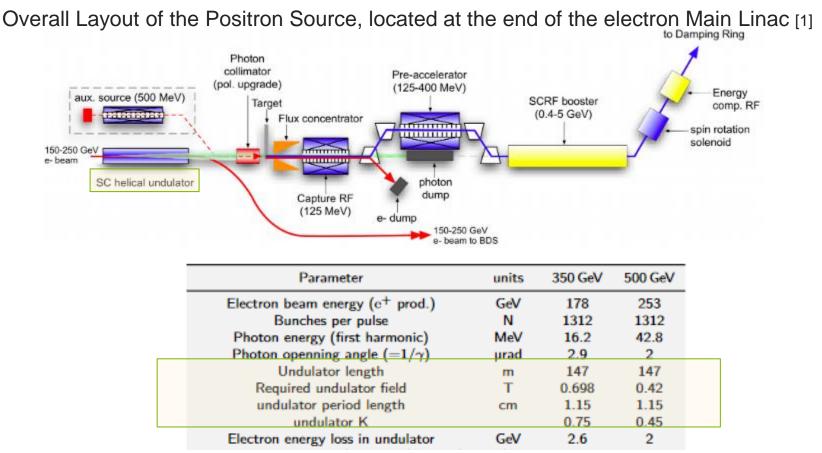
- ILC polarized positron source and helical superconducting undulator (HSCU)
- HSCU examples
- Polarized source HSCU enabling components
- Toward high field HSCU
- Polarized source HSCU roadmap
- Synergy with other projects
- Summary



ILC POLARIZED POSITRON SOURCE AND HELICAL SUPERCONDUCTING UNDULATOR (HSCU)

ILC POSITRON SOURCE

Schematic layout of the ILC, indicating all the major subsystems (not to scale) [1].

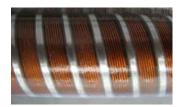


A polarised positron source in which positrons are obtained from electron-positron pairs by converting high-energy photons produced by passing the high-energy main electron beam through an undulator [1]

[1] THE INTERNATIONAL LINEAR COLLIDER, Technical Design Report, Vol.1

HELICAL UNDULATOR FOR ILC POSITRON SOURCE

HELICAL SCU EXAMPLES



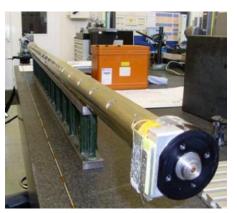
ILC HSCU PROTOTYPE BY UK HELICAL COLLABORATION

- In 2003-2010 HeLiCAI collaboration of Daresbury Lab, Rutherford Lab, University of Liverpool and University of Durham developed, fabricated and successfully tested ILC Helical SCU prototype [1]
- Field of 0.86 T was achieved in NbTi 11.5-mm period magnet
- Two 1.74-m magnets were assembled and tested in 4-m long cryostat

-	1

HSCU magnet prototypes [2]

Helical magnet winding [2]



Cold test of HSCU at RAL

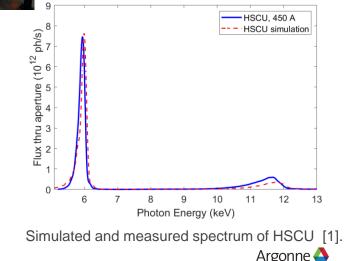
Parameter	Value
Cryostat length (m)	4
Magnetic length (m)	2 x 1.74
Period length (mm)	11.5
Field on axis (T)	0.86
Magnetic bore (mm)	6.35
Vacuum bore (mm)	5.85

[1] D.J. Scott et al., PRL 107, 174803 (2011)

[2] Y. Ivanyushenkov et al., Proceedings of PAC05, Knoxville, 2005, p. 2295.

3.4-m long magnet assembly

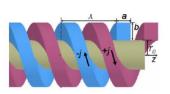
HELICAL SCU FOR APS AT ARGONNE


- SCU technology offers the possibility of building circular polarizing helical undulators
- A helical SCU (HSCU) was installed on APS ring in December 2017. In operation since January 2018
- X-ray photon correlation spectroscopy program at the APS benefits from the increased brilliance provided by an HSCU

Parameter	HSCU
Cryostat length (m)	1.85
Magnetic length (m)	1.2
Undulator period (mm)	31.5
Magnetic bore diameter (mm)	31.0
Beam vacuum chamber vertical aperture (mm)	8
Beam vacuum chamber horizontal aperture (mm)	26
Undulator peak field Bx=By (T)	0.4
Undulator parameter Kx=Ky	1.2

[1] M. Kasa et al., Phys. Rev. Accel. Beams 23, 050701 (2020).

HSCU in Sector 7 of APS storage ring [1].

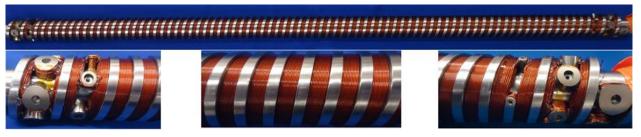


POLARIZED SOURCE HSCU ENABLING COMPONENTS



HSCU MAGNET

- Soft iron 1.2-m long magnet core (former)
- Novel winding scheme with NbTi wire
- Epoxy resin impregnation mold serves as a mold and as a strong back
- Magnet is cooled with LHe contained in the strongback channel. 4-K magnet is thermally isolated from 'warm' beam chamber.
- Successfully operates in APS HSCU since January 2018 [1]


Magnetic model of HSCU.

HSCU prototype coil winding.

HSCU magnet core prototype.

Wound 1.2-m long HSCU magnet core

[1] M. Kasa et al., Phys. Rev. Accel. Beams 23, 050701 (2020).

APS HSCU CRYOSTAT

- The 2nd generation cryostat has been developed at the APS for HSCU
- One thermal shield
- Four RDK415D cryocoolers
- Two temperature stages
- Reduced diameter of the vacuum vessel
- Vertical turrets
- Standard flanges for the end covers
- Simplified design of He filling port

HSCU cryostat (left) and SCU0/SCU1 cryostat (right)

J. Fuerst et al., "A second-generation superconducting undulator cryostat for the APS," Proceedings of CEC-ICMC 2017, Madison, 2017.

APS UPGRADE SCU CRYOSTAT

- Two SCU cryomodules are under fabrication for the APS Upgrade project
- Cryostat design is based on a proven design of the 2-m cryostat for Helical SCU:
 - 4.8-m long 20"-diameter vacuum vessel;
 - single thermal shield;
 - off-shelf vacuum components;
 - three thermal stages (4K 20K 40K);
 - 6 cryocoolers (two types)

Cryostat vacuum vessel

12

Cryostat design model

LHe tank

DESIGN OF MODULAR AND FLEXIBLE SCU SYSTEMS AT FNAL

Rail system based on PIP-II proven SRF cryomodule design -> modularity and assembly process improvement.

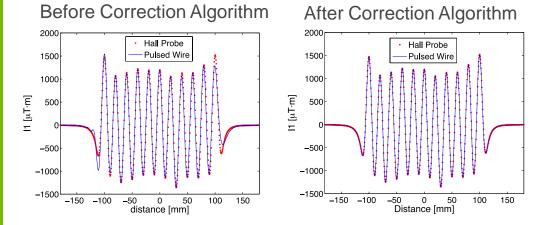
Cooling system compatible with both conduction cooled (cryocoolers) and LHe operations (SRF CM Style).

Focus on production **cost reduction** by employing standard commercially available components.

System **independent** from superconductor technology and coil configuration (planar vs helical)

Ongoing development for a prototype SCU to be installed in EuPRAXIA@SPARC_LAB (LNF-INFN Frascati)

This technology can be transferred to polarized source undulators to help reduce costs and improve integration

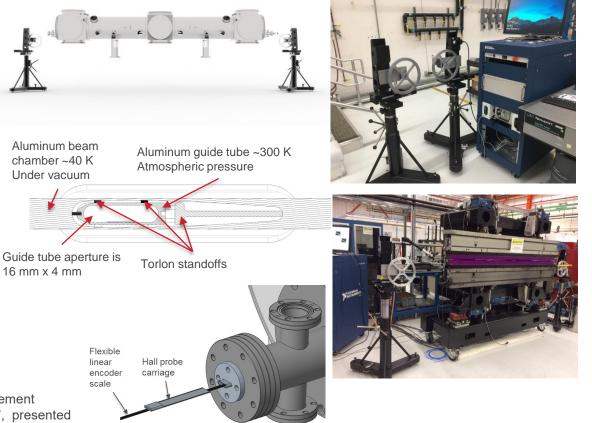


SCU for EuPRAXIA@SPARC_LAB INFN Frascati

HSCU MAGNETIC MEASUREMENTS: PULSED WIRE METHOD ADVANCEMENTS

- The pulsed wire method can be beneficial to measure undulators where measurement access is difficult
- Developed pulsed wire equipment for in and out of vacuum measurements
- Developed algorithms to correct signal distortions due to finite current pulse width and the wire flexural rigidity (dispersion)

In-vacuum Pulsed Wire System


D. Arbelaez et al, Nucl. Inst. & Meth. A, Vol. 716

NEW SCU MEASUREMENT SYSTEM AT APS

- New design is based on experience of using a 2-m long measurement system for the APS SCUs [1]:
 - a proven concept of a warm guiding tube
 - Hall probe carriage is moved with a flexible linear encoder scale [2]
 - does not require a long holder attached to a long travel linear stage
- System is fabricated, assembled and tested. It's being used to measure a well characterized HPMU and APSU SCU Article#1
- System can be modified for measuring HSCUs

[1] M. Kasa and Y. Ivanyushenkov, "Magnetic measurement system being developed for SCU program at the APS", presented at IMMW21, Grenoble, France, June 2019.
[2] M. Kasa et al., U.S. patent No.10,908,231, 2021

TOWARD HIGH FIELD HSCU

DEVELOPMENT OF NB₃SN UNDULATORS AT LBNL

- 6 period prototype in 2006 reached 98% of short sample after three quenches
 - Demonstrated stability at high current density (7.6 kA/mm² non-Cu Jc) with 0.48 mm MJR strand
 - Demonstrated magnet protection at high Cu current densities (8.0 kA/mm² in Cu)
- 1.5 m long prototype reached target field (80% of short sample limit) in 2017
 - Developed fabrication methods for "long" Nb₃Sn undulators

Training curve For Full 1.5 m SCU

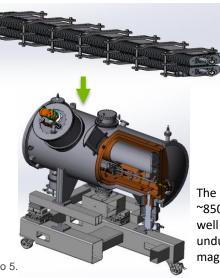
- Demonstrated conductor stability with modern 132/169 RRP conductor (0.6 mm diameter)
- Developed fast quench protection system and demonstrated that full length Nb₃Sn undulator can be protected

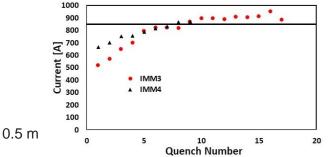
i_{d} i_{d}

1.5 m Long Nb₃Sn Superconducting Undulator Prototype 6 Period Prototype

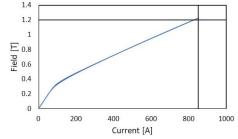
ANL-FNAL COLLABORATION ON NB₃SN UNDULATOR FOR APS

- Goal: Develop, build and install on the APS ring a Nb₃Sn undulator (in a modified SCU0 cryostat) in 2022
- Collaboration with FNAL and LBNL
- Plan:
 - R&D phase build and test short magnet models (complete)
 - 0.5-m long prototype (complete)
 - Full scale magnet and cryostat (in process)
 - Undulator assembly, test, installation on the APS ring
- Achieved:
- Improved conductor stability to achieve 100% of short sample limit
- Demonstrated performance reproducibility both in short coil R&D and in scale-up




84 mm

.1 m

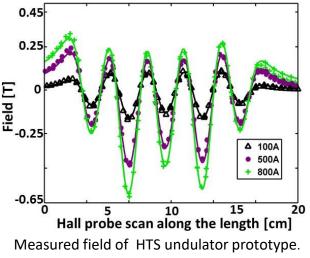


Quench training profile of individual cores

 $\rm Nb_3Sn$ SCU did not require any training to reach the design current in 2nd cooldown and demonstrated excellent training memory.

Excitation curve of 0.5-m long $Nb_3Sn SCU$

The performance exceeded the design current and undulator field of ~850 A and 1.2 T, respectively. The magnetic field simulations agreed well with the measured field values. Nb₃Sn SCU offers at least 20% undulator field increase compared to a NbTi SCU with the same magnetic gap (9.5 mm) and period length (18 mm).


R&D ON HTS SCU AT THE APS

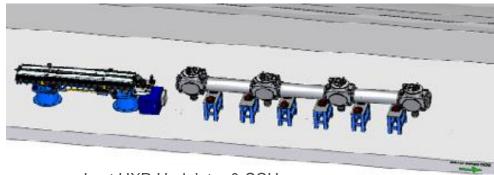
- A Laboratory Directed R&D on HTS SCU demonstrated that 2G HTS conductors are suitable for fabrication of undulator magnets:
- A technique of winding an undulator magnet with HTS tape without electrical joins is developed [1].
- Partial interlayer insulation reduces charging delay [2].
- Prototype undulator shows superior performance at 4.2 K compared to NbTi counterparts (2.1 kA/mm² versus 1.4 kA/mm² for NbTi). This is power supply limit, not superconductor.
- Simulations confirm the measured field profiles. Estimated field value of HTS undulator is about 30% greater than analogous NbTi undulator magnets.
- Availability of long length wire with uniform I_cs and weak mechanical properties are the remaining issues that are currently being addressed by the multiple HTS manufactures.

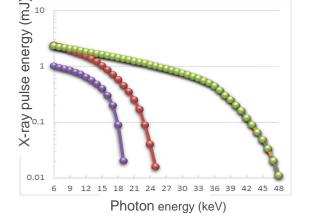
[1] I. Kesgin et al., US patent # US 10,249,420 B2[2] I. Kesgin et al., 2017 Supercond. Sci. Technol. 30 04LT01

Continuously wound HTS undulator prototype.

POLARIZED SOURCE HSCU ROADMAP

POLARIZED SOURCE SCU ROADMAP


SYNERGY WITH OTHER PROJECTS



BENEFITS OF SCUS FOR FELS

- Stronger magnetic fields, higher FEL performance.
- No mechanical motions for wavelength controls.
- Cryo-pumped e-beam pipes provide excellent vacuum.
- SCUs increase the high X-ray energy reach for XFELs. Example: LCLS Cu linac with SCU can reach 48 keV.
- Combined with the high-repetition-rate SRF linac, SCU XFELs will increase the average coherent X-ray flux

SLAC-ANL collaboration is working on FEL SCU Demo project with the goal of fabricating and testing SCUs on LCLS Hard X-ray Undulator beamline

10

LCLS-II-HE can produce 2 mJ pulse energy with low emittance e- beams and SCUs (green curve)

SUMMARY

- THE US HAS ACCUMULATED EXPERIENCE IN:
- BUILDING HSCU FOR APS LIGHT SOURCE
- **DEVELOPING SMALL-BORE MAGNETIC MEASUREMENT TECHNIQUES**
- BUILDING CRYOCOOLER-BASED AND CRYOPLANT-BASED CRYOMODULES
- **DEVELOPING NB3SN AND HTS MAGNETS AND SCU PROTOTYPES**
- THE US CAN TAKE A LEADING ROLE IN DEVELOPING AND BUILDING POLARIZED SOURCE SUPERCONDUCTING UNDULATOR SYSTEM

ACKNOWLEDGEMENT

 ANL*: J. ACKLEY, E. ANLIKER, S. BETTENHAUSEN, K. BOERSTE, R. DEJUS, C. DOOSE, L. EMERY, J. FUERST**, K. HARKAY, Q. HASSE, H. HU, W. JANSMA, M. KASA, I. KESGIN, J. LERCH, V. SAJAEV, D. SKIADOPOULOS, M. SMITH, Y. SHIROYANAGI, S. SORSHER, E. TRAKHTENBERG, AND E. GLUSKIN AND J. BYRD

** NOW WITH SLAC

* WORK SUPPORTED BY THE U.S. DEPARTMENT OF ENERGY, OFFICE OF SCIENCE, UNDER CONTRACT NO. DE-AC02-06CH11357.

- FNAL: E. BARZI, C. BOFFO, D. TURRIONI, M. TURENNE, S. KRAVE, AND A. ZLOBIN
- LBNL: D. ARBELAEZ, L. BROUWER, K. EDWARDS, M. TURQUETI AND S. PRESTEMON
- SLAC: H. BASSAN, G. BOUCHARD, D. CESAR, B. DUNHAM, P. EMMA, D. FRITZ, J. FUERST, Z. HUANG, P. KREJCIK, B. MCKEE, C. NANTISTA, D. NGUYEN, H-D. NUHN, A. RATTI, T. RAUBENHEIMER, T. TAN, P. WELANDER, Z. ZHANG

