A tapered pulsed solenoid as optical matching device for the undulator-based ILC positron source

Overcoming limitations of long-pulse positron focusing elements

C. Tenholt, M. Mentink, M. Fukuda, G. Loisch, G. Moortgat-Pick, T. Okugi, P. Sievers, K. Yokoya

Snowmass Polarized Positron Sources Workshop 01.03.2022

ILC undulator-based positron source

Introduction to layout and technical challenges

- Fast rotating target wheel
- 1ms-positron pulse duration
- OMD for positron capturing
 - Flux concentrator
 - Focus variation during long pulses
 - Quarter-wave transformer
 - Limited yield

Principal Layout: Ti-Wheel with a Diameter of 1.0 m, rotating at 100 m/s, 2000 rpm.

- New approach: Pulsed solenoid
 - Stable and reproducible focus
 - High magnetic flux density
 - Compatible with long pulse duration
 - Manageable heat load in solenoid
 - Manageable heat load on target (!?)
 - Mechanical stress (!?)

Pulsed solenoid for positron focusing

Background and previous work

- Pulsed solenoid was e.g. used at LEP
- Constant, small coil winding cross-section for uniform current density
- Pulsed to reduce power/thermal load
- Potentially higher yield (!?)
- Prel. parameters:
 - ~50 kA peak current
 - 4 ms half-sine pulse + 1ms flat-top
 - ➤ 7 turns, linear taper (20mm → 80mm)
 - Peak field ~5 T
 - Average heat load on target: 73 W + 711 W
 - Peak force on wheel 612 N

Ferrite shielding

Summary

- ► 2D & 3D simulation in Comsol
- ► Movement of titanium plate included (100m/s)
- ► Peak solenoid current: 46886 A
- Combined shield geometry model: coil shield w/ min. distance to shielding (~1mm) + collar shield
- ► → reduction of force & heat load on target
- ► → Increase of peak B(z) ~10%
- ► Shielding material: Alloy Powder Core Ferrite H 150000 Mu (Comsol)

Ferrite shielding

Heating of titanium wheel

- ► Reduction of induced heat 73W + 711W → 31W + 298W
- ▶ Reduction of peak force on target 612N → 263N
- ► Slight field drag (by target movement)
- ► → Further optimization along with mechanical design

Magnetic flux density B(z) on titanium wheel [T]

e+ yield simulations: OMD & capture linac

Simulation from target to end of pre-accelerator (M. Fukuda, K. Yokoya, T. Okugi)

- Yield simulated for:
 - Shielded solenoid
 - Unshielded solenoid
 - Quarter-wave transformer (ref.)

- Simulation with
 - ► Geant4
 - ► Comsol (pulsed solenoid field, incl. target/eddy currents)
 - ► POISSON (magnetic field pre-accelerator, QWT)
- Cavity phases scanned for max. yield

Yield simulations: summary

Simulation results target → damping ring

- Significant yield improvement w.r.t. QWT
- Yield for 250/400 MeV (capture linac) similar
- Bunch lengths similar (QWT & solenoid)
- Possible trade-off: target/linac heat load ↔ yield
- Further optimization might be possible

	Beamloss Power				Positron Yield
	@dogleg	@booster	@EC	@DR	@DR
QWT	0.677 kW	0.014 kW	4.01 kW - 5.56 kW	13.15 kW - 14.3 kW	~1.1
Pulse solenoid w/o shield	0.927 kW	0.055 kW	5.86 kW - 7.93 kW	17.39 kW - 16.01 kW	1.91
Pulse solenoid with shield	0.871 kW	0.064 kW	5.58 kW - 7.90 kW	17.73 kW - 16.24 kW	1.74

Solenoid mechanical design

Stresses and possible support construction

- ► Max. peak von-Mises stress ~146 MPa
 - ► Soft Cu tensile strength ~200MPa
- ► Average power dissipation in Cu coil: ~11.5 kW
- Solenoid coil
 - ► Tapered windings / planar windings with interconnections
 - Conductor cooled from inside
- ► Metal supports to hold coil
- Support rods insulated from support bridges
 - ► Washers e.g. of SiN ceramics
- Magnetic shielding cut at support locations
 - Influence on field t.b.d., main shielding to target unaffected

Summary & Outlook

Recent progress and next steps

- Design of pulsed solenoid is evolving
 - → First fields
 - → Heat load on target
 - → Shielding for heat load reduction
 - → Yield simulations
- So far no show stoppers
 - → Target heat load under control
 - → Head space in pulse length/shape
- Significant yield improvement to quarter wave transformer
- Next steps
 - ► Prel. mechanical design
 - Influence of field variations on yield
 - ► Global optimization

Thank you for your attention!

Contact

Carmen Tenholt (tenholtc@hsu-hh.de)

Helmut-Schmidt University, Hamburg

Matthias Mentink, Peter Sievers

CERN, Geneva

Gregor Loisch (gregor.loisch@desy.de)

DESY, Hamburg

Masafumi Fukuda, Toshiyuki Okugi, Kaoru Yokoya

KEK, Tsukuba

Gudrid Moortgat-Pick

University Hamburg