Update on White Paper on: Beam Driven Plasma Linear Colliders

Spencer Gessner Snowmass AF6 Meeting February 15, 2022

White Paper on Beam-Driven PLC

SLAC

- The White Paper on Beam-Driven PLC roughly follows the outline discussed with Eric Esarey and Carl Schroeder in the PASAIG meeting. The draft is here:
 - https://www.overleaf.com/read/xdccmbzmmftb

Snowmass White Paper on Beam-Driven Plasma Linear Colliders

Spencer Gessner, ¹ Erik Adli, ² Weiming An, ³ Sebastien Corde, ⁴ Richard D'Arcy, ⁵ Chris Doss, ⁶ Eric Esaray, ⁷ Anna Grassellino, ⁸ Bernhard Hidding, ⁹ Mark Hogan, ¹ Ahmad Fahim Habib, ⁹ Axel Heubl, ⁷ Chan Joshi, ¹⁰ Wim Leemans, ⁵ Rémi Lehe, ⁷ Mike Litos, ⁶ Carl Lindstrøm, ⁵ Michael Litos, ⁶ Wei Lu, ¹¹ Warren Mori, ¹⁰ Sergei Nagaitsev, ⁸ Brendan O'Shea, ¹ Jens Osterhoff, ⁵ Hasan Padamesee, ⁸ Michael Peskin, ¹ Sam Posen, ⁸ John Power, ¹² Tor Raubenheimer, ¹ James Rosenzweig, ¹⁰ Marc Ross, ¹ Carl Schroeder, ⁷ Paul Scherkl, ⁹ Navid Vafaie-Najafabadi, ¹⁸ Jean-Luc Vay, ⁷ Glen White, ¹ and Vitaly Yakimenko¹

¹SLAC National Accelerator Laboratory

²University of Oslo

³Beijing Normal University

⁴LOA, ENSTA ParisTech, CNRS, Ecole Polytechnique

⁵Deutsches Elektronen-Synchrotron DESY

⁶University of Colorado, Boulder

⁷Berkeley National Laboratory

⁸Fermi National Accelerator Laboratory

⁹University of Strathclyde

¹⁰University of California, Los Angeles

¹¹ Tsinghua University

¹²Argonne National Laboratory

¹³Stony Brook University

(Dated: February 15, 2022)

1

Outline of White Paper on PLC

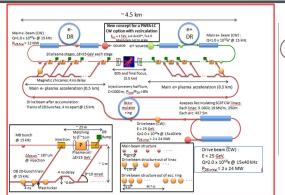
SLAC

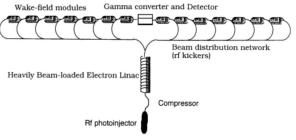
10

- "Previous Designs and Roadmaps" section to explain how thinking on this topic has evolved over the years.
- "Research Milestones since last Snowmass" section to emphasize progress in the field.
- "Plasma Linear Collider Concepts" with emphasis on machine extensions/upgrades (e.g. ILC, CLIC, CCC).
- "R&D Topics"
 - Reference Beam Delivery System White Paper
- "Research Facilities"
- "Conclusion with emphasis on IDS"

1. Executive Summary	4
II. Previous Designs and Roadmaps (S. Gessner)	5
III. Research Milestones since last Snowmass (M. Hogan)	6
IV. Plasma Linear Collider Concepts (S. Gessner, E. Adli)	6
A. General Challenges	6
B. Greenfield Design	7
C. Extensions of Existing Machines	7
V. Plasma Accelerator RD Topics	7
A. Ultra-Low Emittance Beams from Plasma (B. Hidding, A	. Sutherfield) 8
B. High-Quality Single Stage Acceleration (E. Adli)	8
C. Staging (C. Lindstrom)	8
D. Positron Acceleration(S. Gessner)	8
E. High Rep-Rate Acceleration (R. D'Arcy)	8
F. Passive Plasma Lenses (C. Doss, M. Litos)	8
VI. Research Facilities	10
A. FACET-II (M. Hogan)	10
B. FLASHForward (R. D'Arcy)	10

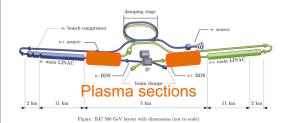
3

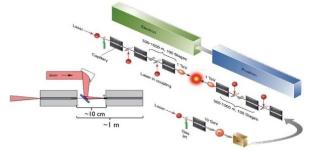

C. A Dedicated Facility for Staging (S. Gessner)

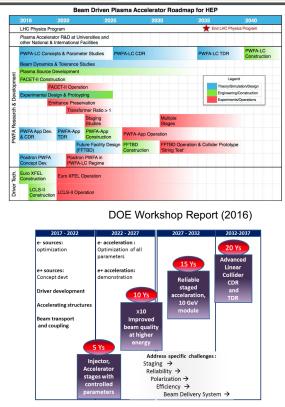

VII. Conclusion and Need for Integrated Design Study

References

PLC History and Roadmaps




J. Rosenzweig et. al., NIMA (1998)


E. Adli et. al.,arXiv:1308.1145 [physics.acc-ph]

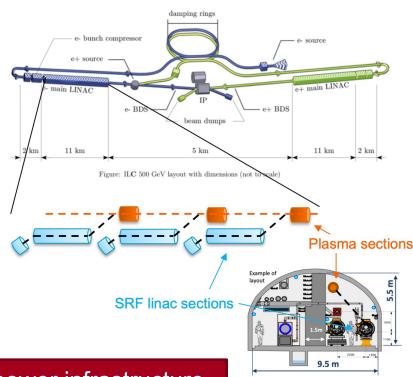
For some considerations on the plasma afterburner, see

C. B. Schroeder, et. al. Phys. Rev. ST Accel. Beams 13, 101301

for example <u>T. Raubenheimer, AIP Conf. Proc. 2004.</u> C. B. Schroeder, et

ANAR Report (2017)

Extensions and Upgrades of Existing LCs


Use the existing linac but split it in pieces.

Pros:

- Uses existing linac "in-situ".
- Achieves energy multiplication through use of high-transformer ratio acceleration (linac sections are optimized for highcharge, shaped drive beams).

Cons:

- Space is at a premium!
- Need to convert SRF cavities to CW.

Emphasis on using existing civil and power infrastructure

 Sections assigned to co-authors but more input and authors are welcome.