Near Term Applications of Advanced Accelerators

C. Emma, J. van Tilborg AF6 Contributed paper update meeting 02/15/2022

Claudio Emma¹, Jeroen van Tilborg², Félicie Albert³, Luca Labate⁴, Joel England¹, Spencer Gessner¹, Frederico Fiuza¹, Lieselotte Obst-Huebl², Alexander Zholents⁵, Alex Murokh⁶, and James Rosenzweig⁷

¹SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
²Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
³Lawrence Livermore National Laboratory, Livermore, California 94550, USA
⁴Istituto Nazionale di Ottica (INO), Consiglio Nazionale delle Ricerche (CNR), 56124 Pisa, Italy
⁵Argonne National Laboratory, Lemont, Illinois 60439, USA
⁶RadiaBeam Technologies, Santa Monica, California 90404, USA
⁷University of California — Los Angeles, Los Angeles, California 90095, USA

White paper status

- View-only link: https://www.overleaf.com/read/jrtfpjfzqdxp
- Divided into 3 sections with relevant experts:
 - Light source applications FEL, betatron, Compton, gamma ray
 - Multiple FEL groups, F. Albert, A. Murokh
 - Medical applications laser ion acceleration, DLAs, VHEE radiation therapy
 - L. Obst-Huebl, J. England, L. Labate
 - Fundamental applications beamdump experiments, astrophysical plasmas
 - S. Gessner, F. Fiuza
- Incorporated all contributions into a completed draft, sent to authors for feedback
- Finalizing executive summary, including connections to other topical groups/frontiers e.g. AF7 Accelerator Technology & Community Engagement Frontier

	Source	Example application	Status	Readiness in 5-10 years
	Plasma-based FEL [8]	Single-shot high-res imaging, non-linear excitation	Experimental feasibility demonstrated, two high-impact papers in 2021	Realistic at higher flux and photon energy in < 5 years
Light Source	Dielectric-structure FEL [9]	Medical imaging	Conceptual Development	Technology to be explored
	Cryo-cooled Copper FEL [10]	Ultrafast Imaging, Attosecond Science	Conceptual Design	Technology to be explored
	Betatron X-rays [11, 12]	Single-shot phase-contrast imaging of micro-structures	Extensive demonstrations	Ready now
	Compton-scattered X-rays [11, 12]	Compact dose-reduced medical imaging, HED dynamics	Proof-of-principle demonstrations	Tunable and mono-energetic in < 5 years
Medical (Particle Source)	Advanced gamma ray sources [13–16]	Security, efficient imaging at reduced dose	Experimental demonstrations (plasma based). Conceptual Development (non-plasma based)	Plasma-based ready now. Non-plasma based technology to be explored
	VHEE [17-19]	Low dose radiotherapy	Well established	Ready now
	Laser-solid ions [20]	Medical imaging, FLASH therapy, HED diagnostic	Extensive demonstrations in TNSA regime	Ready now, >100 MeV protons in <5 years
Fundamental	High-energy particle beams []	Beam-dump explorations, astro-physical plasmas	Initial experiments planned	Results from initial experiments expected in ~5 years

Table 1: High-level summary of near term applications of advanced accelerators described in the manuscript. References, example applications, status and readiness in 5-10 years is included for each source.

Key Points from the Executive Summary

- Motivation for near term applications of AAC emphasized by previous community reports e.g. BRNs from 2020 on "Transformative Manufacturing" and "Microelectronics" and 2016 Advanced Accelerator Development strategy report
- Relevance of near-term applications only discussed in terms of communication/awareness among general public in Snowmass 2013
- International competition leading to concrete investment has emerged from language in the European Particle Physics report.
 - The EuPraxia project is explicitly pointed to as a concrete example
 - Major milestone plasma-based FEL results from Shanghai (laser-driven) and Frascati (beam-driven)
- We emphasize:
 - Development of near term applications drives improvements in stability, reliability, tunability which in turn accelerates road map to particle colliders
 - The need for investment in application-oriented facilities, and dedicated access to beamtime at existing facilities to optimize and render proof-of-principle technologies mature.

Plasma FEL "pre-white paper" publication

- "Free electron lasers driven by plasma accelerators: status and near-term prospects" published 09/10/2021 in HPLSE
 - https://www.cambridge.org/core/journals/high-power-laser-science-and-engineerin g/article/free-electron-lasers-driven-by-plasma-accelerators-status-and-nearterm-p rospects/22B853D363AF76B5CD795558626638CC
- 8 Plasma FEL groups represented:
 - 4 LWFA: COXINEL, DESY-LUX, SIOM, LBNL-BELLA
 - 4 PWFA: SLAC FACET-II, DESY FlashForward, Strathclyde, EuPRAXIA
- Similar ~1-page contributions to be used in each section of white paper