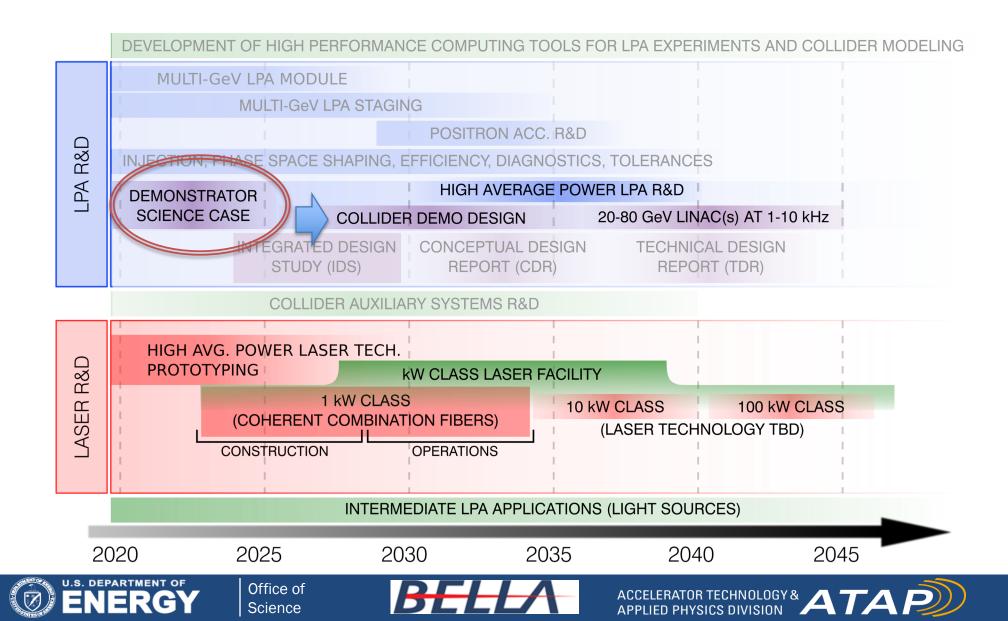
PASAIG - Physics case:

Office of

Science

40 GeV lepton collider at Berkeley Lab

S. S. Bulanov BELLA Center, ATAP Division, Lawrence Berkeley National Laboratory, USA


We acknowledge support from the US DOE Office of Science Offices of HEP under Contract No. DE-AC02-05CH11231

40 GeV lepton collider is a part of the high-level laser-plasma-accelerator-based collider R&D roadmap

BERKELEY LAB

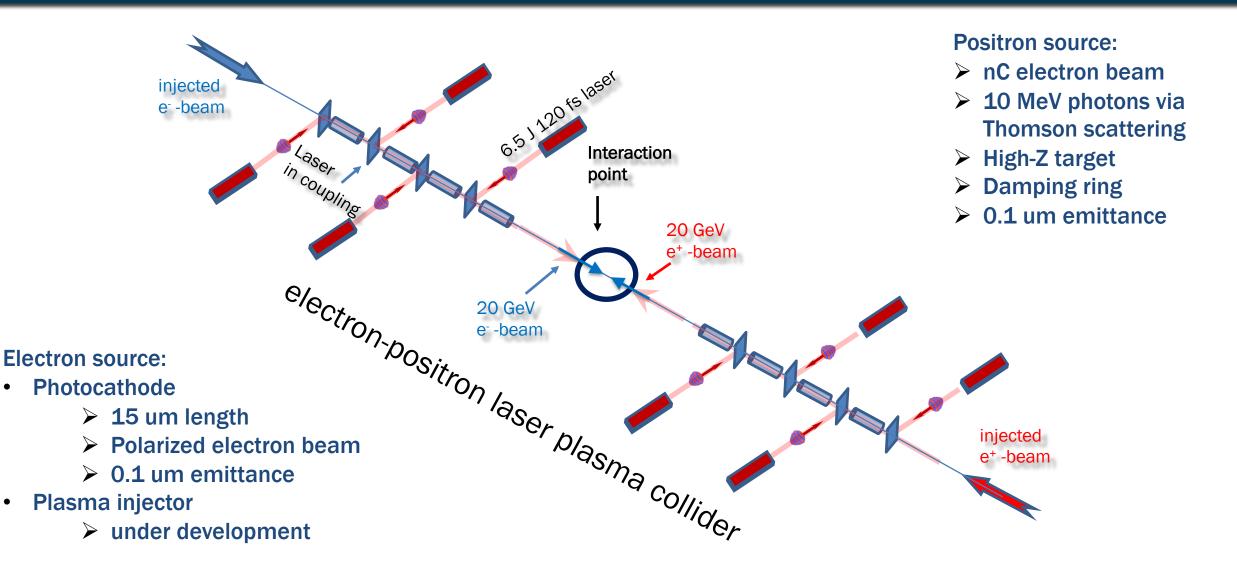
Outline of White Paper

CONTENTS

ACCELERATOR TECHNOLOGY & ATA

P

Whitepaper submitted to Snowmass21:	CONTENTS	
40 GeV lepton collider at Berkeley Lab	I. Executive summary	2
C. Benedetti, ¹ S. S. Bulanov, ¹ E. Esarey, ¹ C. G. R. Geddes, ¹ B. Nachman, ¹ S. Pagan Griso, ¹ C. B. Schroeder, ¹ D. Terzani, ¹ WM. Yao, ¹ and ²	II. Introduction	3
¹ Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA	III. 40 GeV LPA-based collider	4
	IV. Physics reach opportunities	5
 Distribute to broader laser-plasma and HEP community More input and authors are welcome Integrate feedback into the white paper 	A. Multi-TeV	5
	V. Low-energy demonstrator	6
	VI. Gamma-Gamma	8
	VII. Summary	9


U.S. DEPARTMENT OF

C

Office of

Science

40 GEV LPA-BASED COLLIDER DESIGN

U.S. DEPARTMENT OF

Naxe

Office of

Science

٠

Beam energy	$20 { m GeV}$
Bunch charge	$200 \ \mathrm{pC}$
Bunch length (rms)	$15~\mu{ m m}$
Repetition rate	1 kHz (upgrade to 25 kHz)
Spot size at IP	50 nm
Luminosity	$4 \times 10^{30} \text{ cm}^{-2} \text{s}^{-1}$ (upgrade to $1 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$)

TABLE I. : High-level IP parameters for $\sqrt{s} = 40$ GeV e^+e LPA-based collider.

Office of

Science

Applications

<u>QCD</u>:

(i) Precision α_s measurement
 (ii) Measurements to improve simulation modeling
 (iii)New QCD measurements that were not on the radar previously

Beyond <u>SM</u>:

(i) Milli-charged particles
(ii) Axion-like particles
(iii) Low mass resonances decaying to hadronic final states

Revisiting old measurements:

- (i) Detectors could be designed to do physics that was not possible at the older experiments
- (ii) Redo some analysis with lower uncertainties

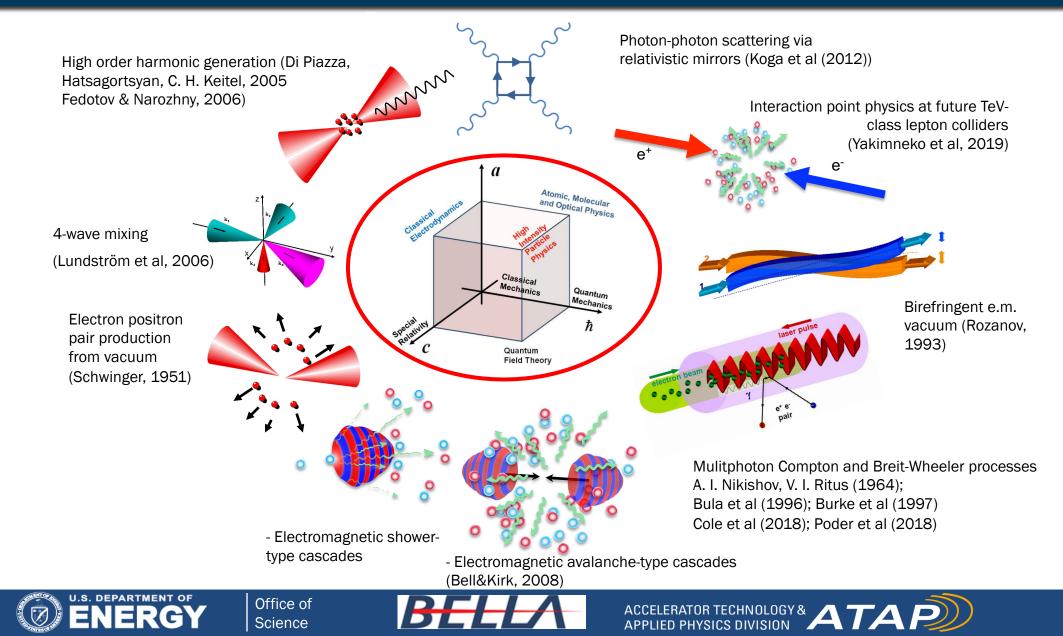
Strong Field QED:

(i) High energy electron/positron/photon interactions with intense EM fields(ii) Final focusing and interaction point limitations due to strong fields

<u>yy collider</u>

Thank you!

Extra slides



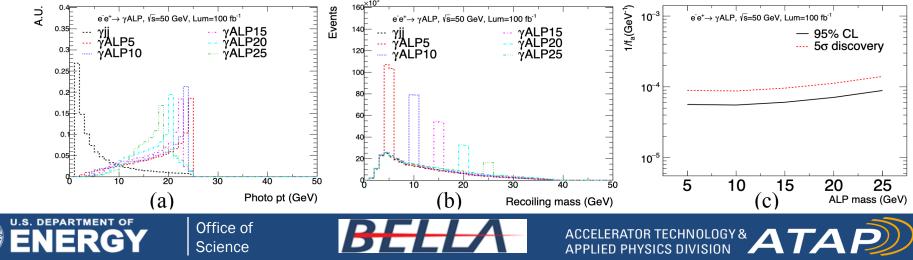
High Intensity Particle Physics describes the phenomena in strong EM fields in the environments where the field strength is comparable to the QED critical field

SERKELEY LAF

ALPs discovery potential at a e^+e^- 50 GeV collider

Wei-Ming Yao (LBNL)

•Axion-like-particles (ALPs) are motivated in theories where new symmetries are broken spontaneously.


•ALPs can be produced with cross-section of 2.0–1.0 pb for mass (5-25 GeV).

Selecting one high pt isolated photon or two electrons and search for a bump in the recoiling mass for detection independently of ALPs decay modes.
Events are generated in Madgraph 3.5.1 with ALP_linear model[1701.05379].

- Pt of photon >10 GeV at truth level (a).
 - Mini dR between photon and rest particles >2.0

•Discovery limits (95% CL) on the ALP coupling fa (c) using recoiling mass(b).

