类Fermilab

Bunch-by-Bunch Kicker and its Driver: 50Ω choice
 V. Lebedev, D. Sun, R. Pasquinelli and D. Peterson

Fermilab, Batavia, IL 60510, U.S.A. Fermilab

Contents

- Requirements
- Kicker
- Power amplifier
- Conclusions

Project X Collaboration
Meeting,
Berkeley,
April 10-11, 2012

Pequ"remernts to krckers

3σ beam size for the bunch passing through and bunch directed to the beam dump

- 2 kickers with 180° betatron phase advance between them
- L=50 cm each, gap - $16 \mathrm{~mm}, \mathrm{U}_{\text {eff }}= \pm 250 \mathrm{~V}$
- Protecting electrodes stick in 1.5 mm (gap 13 mm)
- isolated to detect beam halo which hits the kicker
- Beam is scraped before entering kicker section to prevent beam loss at kicker plates

Requirements to Kickers (continue)

- 6.1 ns between bunches
- rms bunch length $\leq 15^{\circ} \Rightarrow \pm 3 \sigma=90^{\circ}$ or 1.5 ns - flat top
- Bunch-to-bunch distance 13.4 cm
- Wave velocity should match the beam velocity ($\beta=0.067$)
- Bandwidth $\sim 0.5 \mathrm{GHz}$ for unipolar kicks
- Bipolar kicks
- Reduce the voltage of power amplifier by 2 times if "+U" - pass \& "-U" - kill
- But twice larger bandwidth $\sim 1 \mathrm{GHz}$
- Bipolar kicks major advantage
- effective protection of kicker overheating by the beam

- Absence of DC coupling
$\Rightarrow D C$ current is directly related to the beam loss
- Beam current regulation is possible with partial scraping
- Bunch-by-bunch regulation of kick strength

Challenges for Bunch-by-Bunch Chopper

■ Kicker

- Small dispersion in a e.-m. structure decelerating wave to low β
- Small reflections from discontinuities
- Kicker have to be capable to withstand heating by beam halo
- Have to be capable to withstand the power loss of e.-m. wave
- Power amplifier
- Large power and bandwidth
- Even state of the art systems are not good enough
- Signal pre-distortion at the input allows one addressing the problem

Possible Implementation for Kickers

- 2 ways to decelerate e.-m. wave
- Spiral kickers
- Meander
- Short plates can be connected by a coaxial delay lines to reduce coupling
- Major effects limiting the bandwidth

- Coupling between stripes
- Reflections from discontinuities
- Losses in the conductor and dielectric

Simple analytical model

- Without coupling between nearby lines it can be considered as a transmission line
- Dispersion is small and is
- Dominated by loss in the conductor
 and dielectric
- Equations for parallel lines (coupling is on)

$$
\left\{\begin{array}{l}
\frac{\partial I_{n}}{\partial x}=-C_{0} \frac{\partial U_{n}}{\partial t}+C_{1}\left(\frac{\partial U_{n+1}}{\partial t}+\frac{\partial U_{n-1}}{\partial t}\right) \\
\frac{\partial U_{n}}{\partial x}=-L_{0} \frac{\partial I_{n}}{\partial t} \mp L_{1}\left(\frac{\partial I_{n+1}}{\partial t}+\frac{\partial I_{n-1}}{\partial t}\right)
\end{array}\right.
$$

"-" if currents in nearby lines go in the same direction,
"+" - otherwise
$C_{0} \& L_{0}$-capacitance \& inductance per unit length
n-numerates lines

Helical versus meander kicker

- Dispersion equation for helical structure

$$
k \approx \frac{\omega}{\mathrm{v}_{L}}\left[1-\left(\kappa_{C}-\kappa_{L}\right) \cos \left(\frac{\omega l}{\mathrm{v}_{L}}\right)-2 \kappa_{C} \kappa_{L} \cos ^{2}\left(\frac{\omega l}{\mathrm{~V}_{L}}\right)\right]
$$

l - length of a single turn

$$
\kappa_{C}=C_{1} / C_{0}, \kappa_{L}=L_{1} / L_{0}
$$

Kicker Prototype

First prototype (May 2011)

- Verified both analytical estimates and e.-m. simulations
- Excellent performance

S11 for a single electrode (electrode length $=40 \mathrm{~mm}$, width $=18 \mathrm{~mm}$, step $=23 \mathrm{~mm}$

- Choice for the kicker structure
- Separate plates (40 mm long, 20 mm period)
- Helical connection

Kicker Prototype (continue)

S21 for "helical" (red) and "meander" (blue) connections of 6 electrodes

- Obtained results proved the concept validity
- Practical issues to be addressed (vacuum, high power, beam heating)

Work on Kicker Design

- Two implementations were perused
- Plan A
- Copper line bonded to AlN substrate
- Good thermal conductivity for Al N
- Cooled through Cu ground plate
- Each delay line is an individual unit screwed onto the ground plate

- Recently suspended. Waiting results of plan B power test
- Plan B
- Semi-rigid (hand-formable) cable
- Outer conductor of coaxial cables is clamped on to the ground plate
- Less loss in insulator => more suitable
 for 50 cm structure
- Smaller thermal conductivity and maximum operational temperature for
 teflon insulator than AlN but still good enough
- It is being implemented now!!!

Plan A

- Excellent thermal conductivity for
- AIN - 170-200 $\mathrm{Wm}^{-1} \mathrm{~K}^{-1}$
- $\mathrm{Al}_{2} \mathrm{O}_{3}-18-35 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$
- $50 \mathrm{Ohm} \mathrm{Al} \mathrm{O}_{3}$ microstrip can handle 2 kW power in air
- Technical challenges
- Direct bonding of copper (DBC) is required to achieve small e.-m. loss
- Bonding is commercially available
- thin film, thick film, brazing, DBC
- but low-loss is not easy
- Joint between electrode and delay line to minimize reflections
- Purchased and received AlN samples.
- Max. thickness of commercial DBC Al N can only be 1 mm ,
- Required thickness of 4 mm too expensive and requires too long time

DBC AIN delay line

S_{21} for single line (0.1 Db/div.) ~10 Db loss for 50 cm kicker @1 GHz

- Measured insertion loss, impedance, delay time
- Loss is too high at frequencies above 500 MHz for 50 cm structure

Plan B

- Cable: UT 390 (semi-rigid): 4 kW Max. power, 175 C Max. operating temp.
- Design of joint area between cable and electrodes has been completed.
- Design of joint between electrode and input power vacuum feedthrough has been completed.
- Teflon thermal conductivity is good enough: $\Delta T \sim 15 C^{\circ}$ for $2 \mathrm{~W} /$ plate plus $\Delta T \sim 15 C^{\circ}$ for 1 kW amplifier \Rightarrow Operating temperature $\leq 70 \mathrm{C}^{\circ}$
- Engineering effort is focusing on:
- bend cable with minimum distortion of cross section to minimize reflection/dispersion
- trim to right delay time etc.,
- solder cable/feedthrough to electrodes
- and meet vacuum spec.

Power Amplifier

- Required power-0.5-1 kW
- Limited choice of amplifiers with $\sim 1 \mathrm{GHz}$ bandwidth
- All designs are based on combination of outputs of many small power amplifiers
- Gain is far from being good enough
- After testing/checking a few brands we stopped at the SBA series (Teseq AG, Switzerland)
- CBA 1G 150 was tested
- CBA $1 G 1000$ is considered as an amplifier which satisfies all our requirements

Price $\sim \$ 200 \mathrm{~K}$ for 1 kW ,
4 amplifiers are required

- Class A linear and low distortion design
- High reliability gallium arsenide technology
■ Mismatch tolerant and unconditionally stable
- Wide instantaneous bandwidth
- Typical 2 dB compression data (as described in IEC 61000-4-3) provided
- Three year parts and labour warranty
CBA $1 G 1000$

Power Amplifier tests (CBA 1G 150-150 W)

Impulse response of the amplifier for different driving amplitudes

- Good linearity of the response with driving amplitude
- Duration of the response is about one bucket length ($\sim 6.1 \mathrm{~ns}$)
- It makes direct use of amplifier impossible

■ Signal pre-distortion at the amplifier input addresses the problem

- Chase Scientific DA-14000 4.0 GS/sec PCI Based Arbitrary Waveform Generator Card was used

Forming Pulses with Flat Top

- The amplifier bandwidth is $0.05-1 \mathrm{GHz}$ (at half maximum)
- To reduce coupling between nearby pulses a single bunch spectrum has to have a small content at low frequency
- High frequency of upper band boundary allows one to have fast transition between positive and negative voltages and makes triple pulse as a good candidate
- Rise and fall times are chosen to make the bunch spectrum be inside amplifier band

Forming Pulses with Flat Top (continue)

- Desired dependence of voltage on time at the amplifier input (for one pulse) was obtained from the desired signal shape making the following transformations
- FFT of desired pulse
- Removing content outside of amplifier band
- Multiplying obtained spectrum by inverse of amplifier gain
- Performing inverse FFT
- The dependence of voltage on time for multiple pulses (bunches) was obtained by summing signals of single pulse with 1 bucket delay time for each next pulse
- The signal polarity was not changed for bunches to be killed
- The signal polarity was changed for pulses assigned to pass

Five pulses test

6 dB input pad, 123 Vpp out

- 150 W amplifier makes almos \dagger half of the required voltage
- 1 kW amplifier should deliver $\pm 310 \mathrm{~V}$
- i.e. it has 25% margin, most of which will be absorbed by loss of kicker efficiency and the wave damping along the kicker

3 dB input pad, 177 Vpp out

0 dB input pad, 240 Vpp out

Gain nonlinearity

- Gain nonlinearity at high power can be compensated by iterative algorithm correcting shape of the pre-distorted pulses

Gain Correction for Kicker and Amplifier

S_{21} for the kicker (red) and power amplifier (blue). S_{21} for the kicker is a projection of 6 electrode measurements to 25 electrodes

- Signal pre-distortion can additionally correct for dispersion in the kicker and connecting cables as well as reflections at transitions

COMCMUSIOMS

- Design of 50Ω kicker satisfies all requirements for the bunch-bybunch Project X chopper operating at 162.5 MHz bunch rate
- All engineering problems look to be addressed
- Test of the full scale prototype is expected in the fall of this year
- Pulse pre-distortion allows us to use a commercial power amplifier
- Tests performed with 150 W amplifier proved validity of the concept and exhibited excellent results

Backup slides

Simple analytical model (continue)

- If the same signals are propagated simultaneously in all lines the propagation speed is the same as in a single line
\Rightarrow In the first order of perturbation theory for $\varepsilon=1$ the inductive and capacitive coupling coefficients are equal

$$
\kappa_{C}=\frac{C_{1}}{C_{0}}, \quad \kappa_{L} \approx \frac{L_{1}}{L_{0}}, \quad \kappa_{C} \approx \kappa_{L}
$$

- Capacitance per unit length of a single stripe is
- for $w<b(h \rightarrow \infty)$ it can be simplified

$$
C_{0} \approx \frac{\varepsilon+1}{4} \frac{1}{\ln \left(\frac{16}{\pi} \frac{\varepsilon+1}{\varepsilon} \frac{b}{w}\right)}
$$

- Inductance per unit length

- Does not depend on ε
- It is inversely proportional to C_{0} for $\varepsilon=1$

CBA 1G-1000

80 MHz TO 1 GHz 1000 WATT CLASS A BROADBAND AMPLIFIER

Technical specIficatlons

Bunch-by-Bunch Kicker and its Driver: 50Ω choice, V. Lebedev

Test Setup

