

**Project X Collaboration meeting, April 10-12, 2012 LBNL** 

# HWR Cryomodule Development

P.N. Ostroumov Physics Division

April 11, 2012



#### Content

- HWRs for PXIE
- Cavity design concepts
- Cavity EM simulations
- Engineering analysis
- Cavity sub-systems
  - High-power RF coupler
  - Slow tuner
- HWR cryomodule design highlights
- Cryomodule sub-systems
  - SC solenoid
  - BPM
  - Alignment system
  - Clean assembly
- Project status

## Half Wave $\beta_{OPT}$ =0.11 Resonators for PXIE

- Only one cryomodule of 162.5 MHz HWRs is required for acceleration from 2.1 MeV to 10 MeV
- Total available accelerating voltage in the HWR CM is 1.7 MV×8=13.6 MV
  - First 2-3 accelerating periods just 1 MV
  - Significant margin in available voltage
- Can be realized in a reasonable length of the cryomodule below 6 meters
  - Comparable with the ATLAS cryomodules built at ANL Physics Division





Project X Collaboration meeting

#### **Recent ANL Experience with QWRs and HWR**

- 170 MHz HWR (beta=0.26) was built and tested in 2004
- The first conical QWR was designed, built and tested in 2011 with phenomenal results





- 72 MHz QWR
- EP after all mechanical work complete
- 4.4 MV voltage
- Very low surface resistance 1-3 nΩ



# **Cavity Design Concepts**

- Design and technology have been significantly improved since 170 HWR was built in 2003-2004
  - Highly optimized EM design, reduced  $B_{PEAK}$  and  $E_{PEAK}$
  - Conical inner and outer conductors to substantially reduce B<sub>PEAK</sub>
- Two major geometries were investigated: "racetrack" and "donut"
  - Racetrack: quadrupole component of the E-field is minimized by elliptical aperture
  - Donut: quadrupole component of the E-field is minimized by donut shape







P.N. Ostroumov HWR Cryomodule Development





#### Cavity Shunt Impedance and Quality of Electric Field

- Race-track: requires elliptical aperture to correct quadrupole component of the electric field, low shunt impedance, Rsh/Q=195 Ω
- Donut (or ring-shaped): round aperture is fine, much lower residual quadrupole field, appreciably higher shunt impedance Rsh/Q=262 Ω



#### **EM Optimization**

- Excellent EM properties. Recommended design voltage is 1.7 MV which corresponds to E<sub>PEAK</sub> = 38 MV/m and B<sub>PEAK</sub> =44 mT
- Quadrupole component of the electric field is negligible with donut shape

| Freq  | β <sub>ορτ</sub> | L <sub>EFF</sub> | E <sub>PEAK</sub> /E <sub>PEAK</sub> | B <sub>PEAK</sub> /E <sub>PEAK</sub> | R/Q | G  |
|-------|------------------|------------------|--------------------------------------|--------------------------------------|-----|----|
| MHz   |                  | (cm)             |                                      | mT/[MV/m]                            | Ω   | Ω  |
| 162.5 | 0.112            | 20.7             | 4.6                                  | 5.4                                  | 262 | 48 |

No ports





P.N. Ostroumov HWR Cryomodule Development

### **Mechanical Design**

- Based on ANL-developed technologies
  - Die forming of Nb sheets
  - Wire EDM
  - EBW
  - Nb-SS transitions brazed through copper
  - SS He vessel



#### **Resonator and Sub-Systems**

- Four 2-inch diameter ports for EP, 2 ports will be used for pumping and pick-up loops, one 2-inch port is for the high power coupler
  - Blending radius on toroid-port joints is 0.5" significant development by AES to minimize B<sub>PEAK</sub>
- 10-kW RF coupler, fast tuner is not required
  - 4-kW RF power will provide ~20σ
     at 1 mA (σ is the rms frequency noise)
- Pneumatic slow tuner
  - No hysteresis, backlash and vibration
  - Operates in a continuous feedback mode
  - Bellows is the only moving part.
  - Large tuning range
  - Very reliable in operation at ATLAS (more than 25 years)



### 10-kW Adjustable Coupler

- Based on successful development of 4-kW input coupler (1-5/8" coax) for 72 MHz cavities
- Increased diameter of the outer conductor, 2"
- 1" stroke, 70K cooled alumina window, 4.6K intercept, heat load is minimized
- The protoype coupler is being fabricated



# **Engineering Analysis**

- 3D engineering model of the jacketed cavity
  - Nb thickness = 1/8"
  - S.S. Jacket Thickness = 3/16", 1/8" is being analyzed
- Main goals of the analysis
  - Satisfy the design requirements set by ASME pressure vessel code
  - Satisfy ANL and FNAL pressure vessel safety requirements
  - Satisfy Functional Requirements Specifications to the HWRs developed by FNAL & ANL
  - Minimize df/dP
  - Optimize slow tuner

#### **Boundary Conditions**









#### df/dP and Slow Tuner Studies

- Rectangular flanges for slow tuner
  - Gussets on toroid
  - "Flat" surface on the outer conductor
  - df/dP less than 4 kHz/atm for all cases
  - Slow tuner range is 300 kHz at 10 kN









Project X Collaboration meeting

# Cryomodule Design Highlights

- In October 2011 we started with the cryomodule concept which included 9 cavities and 5 SC solenoids
- Beam physics and engineering integration have resulted in 8 cavities, 8 solenoids, 8 BPMs
- The first upstream element is a SC solenoid to mitigate vacuum transition from NC to SC linac
- 2K operation
- Relatively short cryomodule, 5.9 m
- Compact lattice: short focusing periods permit high accelerating voltages
- Compact SC solenoid
  - no-iron, return coils to reduce stray fields
  - H- and V-steering correctors
- Improved alignment techniques
- BPMs attached to each SC solenoid
- Incorporate JT valve and heat exchanger into the cryomodule

# **PXIE HWR Cryomodule**

- Cryomodules vacuum/pressure design based upon ANL's experience and best practices to comply with FNAL ESH.
- The cryomodule design is being developed to comply with the FRS interface requirements:
  - Helium Supply/Return Bayonets
  - Cryogenic Valve Control Connections
  - Pumping and Pressure Relief Connections
  - Cryomodule Positioning and Alignment Supports
  - Low-Particulate Gate Valve Beam Tube Connections
  - RF Input Coupler Cables
  - Instrumentation
  - Solenoid/Corrector Magnet Feedthroughs
  - Alignment Fiducials
- The cryomodule will include all requested instrumentation: BPMs, Cavity Field Probes, Temperature Sensors, Helium Level, Heaters, Vacuum Sensors, Magnet Quench Protection, etc.

#### **Cryomodule Layout**

- 8 cavities, 8 SC solenoids and 8 BPMs
- The first upstream element is a SC solenoid to mitigate vacuum transition
- Top view



Side view



#### **Cryomodule Overall Dimensions**

| <ul> <li>Remaining detailed design work</li> </ul> | Parameter             | Dimension |
|----------------------------------------------------|-----------------------|-----------|
| <ul> <li>He distribution system</li> </ul>         | Cryomodule Width (m)  | 1.6 m     |
| <ul> <li>Vacuum vessel with thermal and</li> </ul> | Cryomodule Height (m) | 1.8 m     |
| magnetic shielding                                 | Cryomodule Length (m) | 5.9 m     |
| <image/>                                           |                       |           |

#### **Clean Room Assembly: Cavity Solenoid String**



# **Beam-Line Alignment Tolerances**

| Dimension                               | Energy<br>Upgrade | Intensity<br>Upgrade | PXIE<br>HWR        |  |  |  |
|-----------------------------------------|-------------------|----------------------|--------------------|--|--|--|
| x (mm)                                  | ±0.25             | ±0.25                | ±0.25              |  |  |  |
| y (mm)                                  | ±0.25             | ±0.25                | ±0.25              |  |  |  |
| z (mm)                                  | ±1                | ±1                   | ±0.50              |  |  |  |
| Pitch                                   | ±0.1 <sup>0</sup> | ±0.1 <sup>0</sup>    | ±0.06 <sup>0</sup> |  |  |  |
| Yaw                                     | ±0.1 <sup>0</sup> | ±0.1 <sup>0</sup>    | ±0.06 <sup>0</sup> |  |  |  |
| Roll                                    | ±0.5 <sup>0</sup> | $\pm 0.1^{0}$        | ±0.06 <sup>0</sup> |  |  |  |
| Results of<br>Measurements<br>with Beam |                   |                      |                    |  |  |  |

Alignment Coordinate System

y-axis

# pitch roll z-axis Alignment Puck (QNT 3)

Alignment Hardware Examples





P.N. Ostroumov HWR Cryomodule Development

# Proposed Magnet Exceeds PXIE Needs: 6 Tesla, 35 mm bore, 0.75 T-m SC solenoid

| Wire:                    | NbTi                     |  |
|--------------------------|--------------------------|--|
| Operating temperature:   | 1.8-4.6 K                |  |
| Magnetic field integral: | ∫Bz <i>dz</i> = 0.75 T-m |  |
| Operating current:       | ~79 amps                 |  |
| Inductance:              | 1.1 Henries              |  |
| Shielding:               | B<100G: z >= 15cm        |  |
| Steering coils:          | 0.2 T, 30 T-mm           |  |
| Bore diameter:           | 35 mm                    |  |

Helium port, electrical leads



ATLAS Intensity Upgrade Magnet



#### Electropolishing after all Mechanical Work is Complete



#### Cryomodule Heat Load Estimates I: 2 K



P.N. Ostroumov HWR Cryomodule Development

# **Design and Development Status**

- Project started 6 month ago
- Cavity EM design and optimization is complete
- Engineering analysis of the cavity and LHe vessel is nearly complete
  - Detailed documentation is being prepared for the ANL/FNAL pressure vessel safety Committee
- Contract with AES for the dies and Nb parts for the prototype HWR is in place
- Bids for niobium purchase were received. Contract will be awarded in 2-3 weeks
- Prototype 10-kW RF coupler is being fabricated
- Prototype SC solenoid is being purchased
- New EBW technique of crossing weld beads has been tested
- Cryomodule
  - Detailed drawings have been developed for cold mass
  - Heat exchanger and J-T valve are being incorporated into the common vessel

Project X Collaboration meeting

- Final design of the vacuum vessel is being developed

P.N. Ostroumov HWR Cryomodule Development