PXIE Accelerator Physics

N.Solyak, V. Lebedev

Project-X collaboration meeting, LBNL, April 10-12, 2012

- Goals
- PXIE Optics
 - Concept
 - Major limitations
 - Failure analysis
- Non-standard hardware
- Non-standard instrumentation
- Conclusion

PXIE - Project X Injector Experiment

- PXIE should deliver 1 mA CW beam to ~25 MeV energy
 - Arbitrary bunch pattern (5 mA from Ion Source -> 1 mA at the beam dump)
- PXIE includes
 - 5 mA ion source
 - 2.1 MeV 162.5 MHz RFQ
 - MEBT with bunch-by-bunch chopper and 11 kW beam dump
 - Two SC cryo-modules: HWR -162.5 MHz & SSR1 325 MHz
 - Beam diagnostics, spectrometer and 50 kW beam dump

- Validate the Project X concept and eliminate technical risks
 - CW RFQ
 - Bunch-by-bunch chopper
 - Initial stage of acceleration in SC linac never tested in experiment
 - Complications can be due to beam loss of RFQ tails in SC linac
 - Extinction for the removed bunches better than
 - 10⁻⁴ specified by the PXIE FRS and determined by multiexperiment operation
 - <10⁻⁹ as desired by μ -to-e experiment
- Obtain experience in design and operation of SC proton linac
 - HWR cryomodule and cavities will be designed and build by ANL
 - SSR1 cryomodule will be designed and build by Fermilab

Major PXIE Features

- "Adiabatic optics" small beta-function variation (smoothness)
 - Mitigation of space charge
- LEBT
 - LEBT chopper
 - Supports machine tuning in pulsed mode: $\Delta t \sim 1 10 \ \mu s$, f_{rep}=60 Hz
- RFQ
 - 162.5 MHz RFQ
 - Reducing frequency reduces RF power,
 - but the major reason is a possibility of bunch-by-bunch chopping, $T\approx 6.2$ ns, bandwidth of $\sim 1~GHz$
- MEBT
 - "Two-kickers chopping" makes chopping possible with present technology
 - 11 kW beam dump for chopped-out beam
 - Large pumping speed to achieve sufficiently good reducing H⁻ stripping on the residual gas
 - Differential pumping to minimize H_2 leakage to the SC cryomodules and RFQ

Major PXIE Features (continue)

- SC cryomodules operating at 2 K
 - Solenoidal focusing
 - Warm gap between cryomodules
 - Fast vacuum valves at both sides of the cryomodules
- RF separation at the top energy for beam extinction studies, f=1.5*162.5 MHz
 - Can help in measurements of bunch length and longitudinal tails
- Instrumentation (not a complete list)
 - Single bunch beam position and beam current measurements averaged over micro cycle (~1 μs); it is not required for all BPMs
 - Built-in synchronous detection:
 - optics measurements in the course of operation
 - suppression of dispersion and reflections in MEBT chopper
 - loss detection
 - required for laser profile monitors with detection of H⁻ beam current variations
- Spectrometer at the end of the machine
- 50 KW beam dump
 - can support operation up to 2 mA beam current

 3σ beam envelopes (ε_{rms_n} =0.25 mm mrad); v. kick is excited by kickers (U=±200 V, 13 mm gap, 2*0.5 m)

- Use of 2 kickers with 180 deg. phase advance reduces kicker voltage
 - Bunch by-bunch current regulation is anticipated in Project X \Rightarrow 2 additional kickers, increased MEBT length
- Sufficient space for diagnostics and differential pumping
- 16 mm gap between kicker plates protects them from the direct beam hit ⇒ ±250 V effective voltage on the kicker
- DC correctors to minimize vertical displacement for passing beam

Optics in SC cryomodules

- Structure of Half-wave cryo-module
 - 8 cavities, 8 solenoids (S C S C S C S C S C S C S C S C S C)
 - Starts with a solenoid to mitigate H₂ influx from MEBT
- <u>Structure of SSR1 cryo-module</u>
 - 8 cavities, 4 solenoids (CSCCSCCSCCSC)
- Both cryomodules have
 - X & Y & S BPM near each solenoid
 - Transverse (x, y) correctors are located in every solenoid
 - Solenoid polarity is changed in each next solenoid (simplifies orbit correction)
 - Vacuum valves at each end
- <u>HW-to-SSR1 interface</u>
 - HW-to-SSR1 transition goes through room temperature vacuum chamber
 - Good from engendering and repair points of view but complicates beam dynamics
 - Both cryomodules face interface with cavities improves long. dynamics
 - Small space allocated (~20 cm) for
 - Laser profile monitor, Pumping port

- Doublet/Triplet focusing in MEBT, Solenoidal focusing in HW and SSR1 cryomodules
-S-C C-S... focusing at CM transition reduces nonlinearities of Long. motion
- Bending magnet in diagnostics line for momentum spread measurements
- Beam dump with X&Y swiping magnets (angle ~2°)

Apertures:

- MEBT 30 mm (13 mm kickers, 10 mm dif. pumping with L=200 mm)
- HWR 33 mm
- Interface box between cryomodules 25 mm
- SSR1 30 mm
- Diagnostic section 30 mm (20mm RF kicker, 15 mm diff. pumping with Length=300 mm)

- Accelerating gradient of the first 3 SC cavities is reduced due to longitudinal over-focusing.
- Design intent for operating voltages are: 1.7 MV HWR & 2 MV SSR1
- To support reliable operation the accuracies of RF voltage and phase should be better than 1% and ~0.5 deg (misalignment and RF errors studies)

Optics for Longitudinal Degree of Freedom

Transformation of 1s and 4s envelopes to the end of HW (left) and SSR1 (right) CM; $\varepsilon_{L_{rms}n}$ =0.25 mm mrad or 0.782 eV μ s

Bunch length (deg) for 1σ initial ellipse from RFQ to the beam dump

- Three NC cavities in MEBT provide longitudinal focusing and match RFQ to SC linac
 - Present voltages are 65, 30 and 45 kV
 - 100 kV is specified as maximum voltage. It results in sufficient freedom for longitudinal optics
- Amplitude motion in MEBT is sufficiently linear
 - 4σ beam envelopes are within ~ ± 70 deg
- Focusing nonlinearity of different cavities is compensated by appropriate phase advance
- In SC sections RF synchronous phase is chosen to have acceptance > 5 σ_{ϕ} to reduce nonlinearity

Focusing and Beam Transport in SC Cryomodules

- Defocusing in SC cavities is RF phase dependent
 - That sets minimum focusing strength of the SC solenoids
- Transverse and longitudinal focusing are adjusted to compensate space charge effects.
 - Space charge does not produce harmful effects and does not produce noticeable beam loss
 - However growth of longitudinal emittance is not negligible

Project X

Sun Mar 04 19:58:51 2012 OptiM - MAIN: - C:\VAL\Optics\Project X\PXIE\PXIE_7.opt

- Asymmetry in cavity geometry produce quadrupole components in defocusing field
- Ways to reduce asymmetry: elliptical beam pipe or donut geometry in beam pipe region.
- Donut geometry is more effective in reduction of quadrupole field to an acceptable level

PrX Collaboration meeting, N.Solyak, V.Lebedev

Project X

G. Romanov (Track-3D, MWS field map, water-bag initial transv. distr)

J. Staples (Parmteq, Gaussianlike initial transverse distribution)

- Two different simulations produce not-negligible difference of the tails behavior
- We launched additional studies to understand this difference and possible ways for reduction of the loss

G. Romanov (water bag tr. Distr.)

J. Staples (Gaussian tr. distr.)

- Although z-p_z distributions look different the particle distributions over action look very similar
- RFQ tails will result in additional loss in further acceleration in PrX linac.
- Characterization of tails in PXIE and ways of possible mitigation tails related problems are important part of PXIE program

Beam loss in SC Cryomodules

ϒጲΔν

المتحديد ومحمد الماجي الماجية الماجي الماجي الماجي والماجية والمحمد المحمد المحمد والمحمد والمحم

0.6

0.5

0.4

- Loss due to intra-beam stripping is expected to be < 0.5 W
- Non-Gaussian tail of RFQ longitudinal distribution is the major source of particle loss, <3.10⁻⁴ (<10 W).
- Loss interception with good efficiency is impossible

Project X

- Too large relative energy change in a single SC cavity => loss in one lattice period
- Collimators in NC sections will mostly intercept the lost beam
- Small fraction of total beam loss will be intercepted by warm interface between cryomodules
- Some fraction will be lost at 2 K
 - < 10 W total particle loss</p>
 - It is still small relative to the loss due to e.-m. fields (~50 W)

h.h

29.1895

ill 1

Losses (TraceWin)

[3/27/2012]

TraceWin - CEA/DSM/Irfu/S

Failure Analysis for the PXIE (failed 1st cavity or solenoid in HWR)

- Both Choppers are switched off.
- PXIE_7 (03-22-12) lattice is used for study

Project X

beam losses after applying

local compensation.

Project X Compensation of the failed 1st cavity: Transverse & Longitudinal Beam Dynamics

• Failed cavity dramatically changes L. dynamics; small disturbance in T. dimensions

Failure of 1st solenoid in HWR section

Project X

PrX Collaboration meeting, N.Solyak, V.Lebedev

Project X

Summary of failure analysis

Failed 1 st HW cavity		(*Parameters at the end of PXIE Lattice)			
		Baseline	After Failure	After local compensation	
	Energy (MeV)	23.52	23.24	23.25	
	ε_{z} (π · mm mrad)	0.326	0.639*	0.359	
	$\varepsilon_t \ (\pi \cdot \text{ mm mrad})$	0.234	0.258*	0.240	

- Failure of 1st cavity in HWR section is locally compensated.
- No additional losses are obtained after compensation.

Failed 1st solenoid

	Baseline	After Failure	After local compensation
Energy (MeV)	23.52	23.52	23.61
ε_{z} (π · mm mrad)	0.340	0.459*	0.368
ε_{t} (π · mm mrad)	0.238	0.275*	0.298

- Failure of 1st solenoid in HWR section is locally compensated.
- There are some additional beam losses (0.5 %) even after local compensation

- Button type BPMs: four electrodes, three coordinates (x, y, s)
 - Better sensitivity and smaller size than strip-line BPMs
- Used for: beam position measurements & optics measurements with differential orbits
- Duration of the signal is determined by BPM radius and particle velocity
 - Bunch duration is shorter and can be neglected
- Bunch-by-bunch measurements are very attractive
 - Looks tough but doable
- Sensitivity will be determined by preamplifier noise. Shot noise is smaller.
- Averaging over micro-cycle (~1 μ s) should deliver a few μ m-scale sensitivity

Laser Profile Monitor

- Plans to have 3 Laser Profile monitors
 - MEBT; Transition HWR-SSR1, Diagnostic section at the end.
- Measurements of all 3 beam profiles is possible
- At least 1 MEBT profile monitor will have an electron detection.
- 1 W laser strips ~3.5e-6 relative charge. Signal is large enough to measure change in current of H⁻ beam
 - Synchronous detection of resistive wall monitor signal or sum BPM signal
 - Measurement time ~ 10 s per degree of freedom in CW regime

- Satisfies FRS
 - Amplifier 1 kW, ±300 V, 50 1000 MHz band available at the market
 - 2 W beam power can be lost at single plate (50 W at the kicker)
- Success is based on pulse pre-distortion (will allow compensation of reflections and dispersion in kicker)
- 200 Ω kicker
 - Work on a 500 V pulser proceeds

- Required effective kick voltage is 250 kV
- Deflection 5.1 mrad
- Power 6 kW

Preliminary design (G.Romanov)

- Inner radius 130 mm
- Gap 20 mm
- Plate side 65 mm
- Drift tube to drift tube 100 mm
- Radius of stem base 50 mm

Cavity parameters

Half wave coaxial cavity	
Frequency, MHz	243.75
E_surf_max, MV/m	13.75
Power losses (average), kW	6.0
Q	13420
Kick voltage,	250 kV
Proton β	0.22

- Power rating 50 kW at beam energy 25 MeV
- Local radiation shielding of the beam dump and the bending dipole
- Start conceptual design

PrX Collaboration meeting, N.Solyak, V.Lebedev

Beam Dump: Sketches of the Dump + Radiation Shielding

PrX Collaboration meeting, N.Solyak, V.Lebedev

Project X

- We have good understanding of the PXIE concept
- Optics was designed and studied (first order approximation)
 - Ongoing program for LEBT and RFQ beam physics studies
- Design work of HWR and SSR1 cryomodules is proceeding well
 - Expect to have conceptual design by the end of this year
 - ANL HWR
 - FNAL SSR1
- No obvious showstoppers