WG2 introduction (Neutrino Scattering Physics)

Tatsuya Kikawa (Kyoto University) Adi Ashkenzi (Tel Aviv University)

Raúl González Jiménez (Complutense University of Madrid)

NuFact 2022: The 23rd International Workshop on Neutrinos from Accelerators @ Salt Lake City August 1, 2022

Neutrino-quark interaction

- Neutrino interaction with a point particle can be described by the standard model.
 - → Simple and explicit.

$$\frac{d\sigma}{dy} = \frac{G_F^2 \cos^2 \theta_c s}{\pi}$$

$$\frac{d\sigma}{dy} = \frac{G_F^2 \cos^2 \theta_c s}{\pi} (1 - y)^2$$

Neutrino-nucleon interaction

- Neutrino actually interacts with nucleons which have size and internal structure.
 - → Complicated.

Llewellyn-Smith formula
$$\frac{d\sigma}{dQ^2} = \frac{G_F^2 m_N^2 \cos^2 \theta_c}{8\pi E_\nu^2} \left[A(Q^2) \pm B(Q^2) \frac{s - u}{m_N^2} + C(Q^2) \frac{(s - u)^2}{m_N^4} \right]$$

Dipole form factors
$$F_A(Q^2) = \frac{g_A M_A^2}{M_A^2 + Q^2}$$
 $C_E^V(Q^2) = \frac{M_V^2}{M_V^2 + Q^2}$
 $C_M^V(Q^2) = \frac{(1+\xi)M_V^2}{M_V^2 + Q^2}$
 $C_M^V(Q^2) = \frac{n}{M_V^2 + Q^2}$

Neutrino-nucleus interaction

- Nucleons are not free but are bounded in nucleus.
- Involving various nuclear effects.
 - Multi-body nucleon correlation
 - Fermi momentum
 - Pauli blocking
 - Intra-nuclear hadronic interaction

$$H = \sum_{i} -\frac{\hbar^{2}}{2m} \nabla_{i}^{2} + \sum_{i < j} v (\vec{r}_{i} \vec{p}_{i} \vec{\sigma}_{i}, \vec{r}_{j} \vec{p}_{j} \vec{\sigma}_{j})$$
Nucleon-nucleon correlation

→ Very complicated and poorly understood.

(b)

Neutrino oscillation measurements

 Neutrino energy spectrum is different between near and far detectors. $\frac{N_{far}}{N_{near}} = \frac{\int \Phi(E_{\nu}) \sigma(E_{\nu}) \varepsilon(E_{\nu}) P_{osc}(E_{\nu}) dE_{\nu}}{\int \Phi(E_{\nu}) \sigma(E_{\nu}) \varepsilon(E_{\nu}) dE_{\nu}}$

→ Precise neutrino interaction model and neutrino event generator are essential.

Ongoing neutrino oscillation experiments

- Statistical error is dominant.
- Neutrino interaction uncertainty is source of one of the largest systematic errors.
 - → Better understanding about neutrino interaction improves the precision of neutrino oscillation measurement.

T2K systematic errors

	1Re		
Error source (units: %)	FHC	RHC	FHC $CC1\pi^+$
Flux	2.8	3.0	2.8
Xsec (ND constr)	3.8	3.5	4.1
Flux+Xsec (ND constr)	2.8	2.7	3.4
Xsec (ND unconstr)	$\parallel 2.9$	3.3	2.8
SK+SI+PN	\parallel 3.1	3.8	13.6
Total All	5.2	5.8	14.3

NOvA systematic errors

Taken from Neutrino2022 talks

Future neutrino oscillation experiments

- Statistics will significantly increase and effect of neutrino interaction model uncertainty will be dominant.
 - → Precision of neutrino interaction model translates directly into precision of neutrino oscillation measurement.

Hyper-Kamiokande CPV sensitivity

DUNE CPV sensitivity

Symmetry 13, 9, 1625 (2021)

Theory

- Neutrino-nucleus interaction is a complex many-body problem.
- Solved approximately using nuclear models.
- Dependent on the dominant primary process (quasi-elastic, 2p2h, resonance production, DIS)

Neutrino event generators

- Neutrino event generator is needed to estimate the efficiency and backgrounds for neutrino experiments.
- Several neutrino event generators are being developed.

Experiments

- Several experiments are measuring neutrino-nucleus cross sections. (mainly differential cross sections)
- Measurements to improve neutrino interaction models.
 - Electron scattering
 - Improvement of flux prediction

T2K near detector

NOvA near detector

MINERvA detector

MicroBooNE detector

ArgoNeuT detector

WG2 focuses

- Experimental efforts
 - 16 talks (12 on cross section measurement, 2 on electron scattering, 4 on flux prediction)
- Theory inputs
 - 5 talks
- Generator developments
 - 2 talks
- Joint session WG1-WG2:
 Constraining Xsec systematics / Xsec tuning
 - 4 talks
- Joint session WG1-WG2-WG6: Near detector constraints
 - 5 talks

WG2 parallel sessions

August 2 (Tue), 16:00-17:20, Session focused on constrains on neutrino interaction models

The ENUBET monitored neutrino beam for high precision cross section	measurements Claudia Caterina Delogu
Wasatch B	16:00 - 16:20
Electro-nuclear scattering measurements for neutrinos with LDMX	Wesley Ketchum
Wasatch B	16:20 - 16:40
Electron-Nucleus Scattering Constraints For Neutrino Interactions And	Oscillations Afroditi Papadopoulou
Electron-Nucleus Scattering Constraints For Neutrino Interactions And Wasatch B	Oscillations Afroditi Papadopoulou 16:40 - 17:00
·	16:40 - 17:00

August 4 (Thu), 14:20-15:40 and 16:10-17:10, Sessions focused on theory and event generators

Suppression of quasielastic electron scattering cross sections at small q and extraction of the Arie Bodek	e Coulomb Sum Rule
Investigation of the MicroBooNE inclusive neutrino cross sections on Argon	Marco Martini
Wasatch B	14:40 - 15:00
Benchmarking intra-nuclear cascade models for neutrino scattering with relativistic optical policies of the second security of the second policy of the second second second second second second second second second sec	otentials
Final state interactions in semi-inclusive neutrino-nucleus scattering: Application to T2K and Mr Juan Manuel Franco-Patifio	MINERvA experiments
Nuclear PDFs with Neutrino DIS data - a compatibility analysis from nCTEQ	Richard Ruiz
Wasatch B	16:10 - 16:30

Cross section measurements with MINERvA and prospects of cross section measurements with ICARUS

Recent developments in the GENIE neutrino event generato

August 5 (Fri), 11:15-12:35, 14:20-15:35 and 16:10-17:30, Sessions focused experimental results

Wasatch B Recent MicroBooNE cross-section results: inclusive channels and pion production	11:15 - 11:35 Elena Gramellini
Recent MicroBooNE cross-section results: inclusive channels and pion production	Elena Gramellini
record microboonic cross cooling recalled microstro chambers and promptone	
Wasatch B	11:35 - 11:55
Pion-argon inclusive cross-section measurement on ProtoDUNE-SP	Yinrui Liu
Wasatch B	11:55 - 12:15
The NEUT Neutrino Interaction Simulation	Stephen Dolan
Wasatch B	12:15 - 12:35

12:00

15:00

16:50 - 17:10

Detection of high-energy neutrinos at LHC with SND@LHC	SND@LHC Coll.
Wasatch B	14:20 - 14:35
Overview of physics results with coherent elastic neutrino-nucleus scattering data	Matteo Cadeddu
Wasatch B	14:35 - 14:50
NA65(DsTau) experiment at CERN	DsTau Collaboration
Wasatch B	14:50 - 15:05
The Accelerator Neutrino Neutron Interaction Experiment	Jingbo Wang
Wasatch B	15:05 - 15:20
CEVNS at CSNS in China	qian liu
Wasatch B	15:20 - 15:35

	nuSTORM; Neutrinos from Stored Muons	Mark Scott
	Wasatch B	16:10 - 16:30
	Status of the NINJA experiment	Takahiro Odagawa
	Wasatch B	16:30 - 16:50
	T2K latest results on neutrino-nucleus cross sections	Andrew Cudd
17:00	Wasatch B	16:50 - 17:10

Plenary talks from WG2

- August 2 (Tue), 9:00-10:30
- Latest results from COHERENT Samuel Hedges
- Latest from Models and Generators Noemi Rocco
- Potential Constraints to Neutrino Nuclei interaction based on electron scattering data - Vishvas Pandey

Summary

- Neutrino-nucleus interaction is very complicated and poorly understood.
- It's important for the precise measurement of neutrino oscillation.
- Tremendous efforts for better understanding of neutrino interaction models.
 - Theory
 - Generators
 - Experiments
- Please join us and let's enjoy discussions in WG2.

Thank you