







# Recent Neutrino Oscillation Results with IceCube/DeepCore

Kayla Leonard DeHolton on behalf of the IceCube Collaboration

Kayla Leonard DeHolton

NuFact 2022

### IceCube



#### **IceCube**

- 1 km<sup>3</sup> detector located at the South Pole
- 5,160 modules across 86 strings
- Detects Cherenkov light from neutrino interactions
- Optimized for TeV-PeV

#### <u>DeepCore</u>

- 8 dedicated strings with denser spacing
- High quantum efficiency modules
- Optimized for GeV

# **Atmospheric Neutrinos**

- Neutrinos produced in cosmic ray air showers via pions and kaons
- Dominated by  $\nu_{\mu}$  , then  $\overline{\nu_{\mu}}$  , then  $\nu_{e}$  then  $\overline{\nu_{e}}$

• Detector can't distinguish  $\mathbf{v}$  versus  $\overline{\mathbf{v}}$ , but ratio is important because of differing

interactions





### IceCube/DeepCore in the experimental $\nu$ landscape



# Complementarity of DeepCore and accelerator experiments

Probes the same physics but w/ different sources of systematic uncertainties:

- Energy
- Cross sections (DIS regime)
- ν production mechanisms
- Detector uncertainties
- Oscillation peak above tau production threshold

# **Event Signatures**

#### Cascades



- Spherical
- NC,  $v_e$  CC,  $v_\tau$  CC

#### **Tracks**



- Elongated
- $\nu_{\mu}$  CC

color = time
early hits
late hits

#### simulated 9 TeV track event



Event display courtesy of Ben Smithers

# **Event Signatures**

#### **Cascades**



- Spherical
- NC,  $v_e$  CC,  $v_\tau$  CC

#### **Tracks**



- Elongated
- $\nu_{\mu}$  CC

color = time
early hits
late hits

#### simulated 25 GeV track event



### Probing oscillations with GeV neutrinos

(DeepCore)

# Atmospheric Neutrino Oscillations

Atmospheric neutrinos produced by cosmic rays

• Predominantly  $u_{\mu}$  oscillating to  $u_{\tau}$ 

Oscillation maximum near 25 GeV





$$P(\nu_{\mu} \to \nu_{\mu}) \approx 1 - \sin^2(2\theta_{23}) \sin^2\left(1.27 \frac{\Delta m_{32}^2 L}{E}\right)$$

# **Current Generation Analyses**

- New event selection / background rejection to suppress backgrounds by 6+ orders of magnitude
  - → PoS(NuFact2021)062
- Improved treatment of many systematic uncertainties
- New reconstruction and particle id
  - → arXiv:2203.02303
- More years of data



# Typical Analysis Procedure

- Simulate flux + oscillations + cross sections + detector response
- Perform a binned analysis varying physics & nuisance parameters in templates



# Systematic uncertainties considered

#### Flux uncertainties

- Cosmic ray spectrum
- Pion & Kaon production uncertainties

| $E_i$ (GeV) Pions                   |       |                    |     |       | _        | Kaons  |    |                       |  |
|-------------------------------------|-------|--------------------|-----|-------|----------|--------|----|-----------------------|--|
| <8                                  | 10%   |                    | 30% |       |          | 40%    |    |                       |  |
| 8-15                                | 30%   | % 10%              |     | 30%   |          |        |    | 40%                   |  |
| 15-30                               | 30 10 | 5%                 |     | 10%   |          | 30     | 20 | 10%                   |  |
| 30-500                              | 30    | 0 15%              |     |       |          | 40 30% |    |                       |  |
| >500                                | 30    | 30 15%+Energy dep. |     |       |          | 40     |    | 30%+Energy dep.       |  |
| (                                   | , , , | 0                  | 5   | **    | 7<br>1 / |        |    | $0.5  x_{\text{AAD}}$ |  |
| (                                   | ,     |                    |     | X LAB | 1 (      |        |    | LAB                   |  |
| Barr et al, Phys. Rev. D 74, 094009 |       |                    |     |       |          |        |    |                       |  |

#### Cross sections

- Axial mass uncertainties for QE and resonance events
- DIS  $\sigma$  transformation between GENIE and CSMS

JHEP **08**, 042 (2011). arXiv:1106.3723

#### Detector and Ice Properties

- Improved treatment for modeling the optical properties of ice layers and refrozen drill column
- PMT charge calibration
- → In total, about 40 systematic parameters are studied; approx. half are included as nuisance parameters in fit





# Current Generation Samples / Analyses

#### Sub-sample

High quality events

~20k events

#### Fast reconstructions

- separate recos for energy and direction/vertex
- can only be applied to certain highquality events

#### Results available

#### **Full Sample**

High statistical power

~200k events

#### Full 8d reconstruction

- energy, direction, vertex fit simultaneously
- can be applied to almost any event

#### In progress

### Latest measurement of oscillation parameters

- Sub-sample of ~10% of full data set; events with lots of direct, unscattered light
  - Less susceptible to detector-related ice systematic uncertainty
- In agreement with other global neutrino experiments





### Upcoming measurement w/ full statistical power



- ~200,000 events in sample
- 99% neutrino purity
- Expected sensitivity is competitive with long baseline accelerators
- Complementary to accelerator measurements
  - probes higher energies
  - deep inelastic scattering regime
  - above tau lepton production threshold for  $v_{\tau}$  CC
  - different systematics at production and detection

### Additional 3v analyses in progress

- Atm. oscillation measurement using a CNN reconstruction
  - → See talk later in the week by Shiqi Yu



- Neutrino mass ordering
  - $\rightarrow$  See talk later in the week by Maria Prado



- Tau Neutrino Appearance
  - DeepCore is above the tau lepton production threshold for  $v_{\tau}$  CC
  - $\mathbf{v}_{ au}$  appearance analysis fits a separate normalization  $\mathbf{N}_{\mathbf{v}_{ au}}$
  - Expect a world leading measurement of the tau neutrino normalization

$$\begin{bmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{bmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \begin{bmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{bmatrix}$$
$$|U_{e3}|^{2} + |U_{\mu 3}|^{2} + |U_{\tau 3}|^{2} = 1$$



### Probing oscillations with TeV neutrinos

(IceCube)

### High Energy searches for matter-enhanced oscillations

- TeV sample of  $\nu_{\mu,cc}$  and  $\overline{\nu_{\mu,cc}}$
- Matter effects are enhanced for neutrinos passing through the core
- Originally developed for a 3+1 eV-scale sterile neutrino search
- · Additional analyses to study neutrino decay, NSI, and more







### Unstable Sterile Neutrinos (3+1+decay)

- Allowing  $\mathbf{v}_4$  to decay introduces a dampening of oscillations
- Coupling constant  $g^2$  related to the lifetime of  ${f v_4}$  through  $au=rac{16\pi}{g^2m_4}$
- Best fit at  $g^2=2.5\pi$  (au ~ 10<sup>-15</sup> s)
- No evidence it is preferred over 3v model; p-value ~3%





### Non-standard Interactions (NSI)

- Standard matter potential for neutrinos traversing Earth arises from interactions with electrons (MSW effect)
- Matter potential is modified by introducing non-standard interactions

$$H_{\mathrm{mat+NSI}} = V_{CC}(x) egin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e au} \ \epsilon_{e\mu}^* & \epsilon_{\mu\mu} & \epsilon_{\mu au} \ \epsilon_{e au}^* & \epsilon_{\mu au}^* & \epsilon_{ au au} \end{pmatrix}$$

#### DeepCore analysis

- Lower energy sample (5-100 GeV)
- All flavors
- PRD 104, 072006; arXiv:2106.07755

#### **IceCube analysis**

- Higher energy sample (500 GeV 10 TeV)
- Tracks only  $(v_{\mu} CC)$
- PRL 129, 011804; <u>arXiv:2201.03566</u>

### Non-standard Interactions (NSI)

#### • Recent constraints on $\epsilon_{\mu au}$ :





arXiv:2201.03566

### **Beyond Oscillations**

# Inelasticity for $\nu_{\mu}$ CC DIS interactions

 The inelasticity y can be determined from the fraction of energy that goes into the cascade/shower portion (rather than the secondary muon track)



# Flux Averaged Inelasticity for $(\overline{\nu}_{\mu})$ CC

- Preference towards higher values of <y>
  - Multiple interpretations:  $v/\overline{v}$  flux ratio, preference for CSMS-like, etc.





# IceCube Upgrade

- Denser infill
- Multiple PMTs per module
- Lower energy threshold & improved resolution
- Already funded. Deployment scheduled for 2025-26.





WG6
Tue. 3:00 PM
M. DuVernois

WG6
Fri. 2:38 PM
W. Kang

### More IceCube work to check out this week:

WG5 - BSM

Dark Matter searches





WG7 - Inclusion, Diversity, Equity, Education, & Outreach

DEI in Masterclasses



### Conclusions & Outlook

- IceCube and DeepCore provide a unique view of oscillations to complement long baseline experiments
  - Higher energies, DIS regime, different production/detection mechanisms
- Broad neutrino physics scope spanning GeV and TeV energies
  - Standard oscillations, NSI, sterile neutrinos, dark matter, scattering
  - Current datasets are being used for more analyses in progress than could be mentioned here
- Next generation detector rapidly approaching (Deployment in 2025-26)
  - IceCube Upgrade will expand GeV capabilities and improve calibration

#### Thank you!