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The future of experimental muon physics is bright!

« There is so much going on and proposed, | will only have time to hit a few of the
highlights:
- Flavor
CLFV
LNV

- Precision measurements
Spectroscopy
Antimatter gravity

Dipole moments

- Practical applications
Energy applications

Remote sensing and tomography

« This talk is heavily influenced by my personal interests, and is not endorsed by anyone,
including my family, my pets, and perhaps not even future self ... | have inevitably left out
your favorite experiment.
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The future of experimental muon physics is bright!

« There is so much going on and proposed, | will only have time to hit a few of the
highlights:

- Flavor

CLFV
LNV

Prediction is very

. difficult, especially if
pectroscopy “rs

Antimatter gravity it's about the future!
Dipole moments Ne||S BOhr

- Practical applications
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Energy applications
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Physics of flavor
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Charged Lepton Flavor Violation

Although it has never been observed, we know that cLFV must
occur, even in the Standard Model, through neutrino loop effects.
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However, the predicted SM rates are

unobservably small: ,
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Any CLFV (or LNV) observation must be new physics!
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Muons could have a lot to tell us about CLFV

This insight is certainly not new...
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Muons could have a lot to tell us about CLFV
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Muons could have a lot to tell us about CLFV
We know the Standard Model is incomplete,

and attempts to fix it generically introduce
flavor violation, particularly in the muon sector.
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In many channels, we know how to do better in the future (in some cases
much better) than we can today

Surface muon beams “High” energy beams

ut = ety uw A(Z,N) —e A(Z,N)

Ut S eteten nw A(Z,N) = eTA(Z —2,N)
CLFV and LNV!
,LL+6_ <~ ,u_6+
Double CLFV! There are a large number of
experiments proposed to further address

these channels; | apologize for only
mentioning those I'm involved with.
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MuZ2e-Il in the 2030s

e Mu2e-Il would be a “minimal” evolution of Mu2e with targeted upgrades to
achieve an additional factor of 10 improvement in sensitivity

100kW PIP-II beam power

Proton Beam

Production SolenOid/ Detector Solenoid
e = Transport Solenoid n
o pud . - T : v | 4‘
L — 3 - . - ‘ '/'_ -

Production Target

Muon

Upgraded target Stopping Target Upgraded detectors
and shielding

Different stopping materials

£& Fermilab
10 Lynch | NuFACT 2022



MuZ2e-Il in the 2030s

« The key enabling technology is PIP-II
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MuZ2e-Il in the 2030s

« The key enabling technology is PIP-II
- It’'s being built for LBNF/DUNE, but 99% of its capacity will be un-utilized!

0.6 ms, 2ma for Booster \Possible Implementation at PIP-II Period 50 ms

Muon Campus @ 20Hz

47 ms, 0.133 ma for mu2e-Il
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AMF: an advanced muon facility for Fermilab beyond Mu2e-II

« Ultilize the available proton beam enabled by PIP-II that will be unused by
LBNF/DUNE — up to 1MW

« Provide a flexible facility for future experiments after the current muon program
has run its course

« Build on synergies with the dark matter and muon collider communities

2 Fermilab
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AMF enabling technologies

e PIP-II
- Proton source

« Proton compressor ring

- Convert CW beam to intense proton pulses

« Production solenoid and target systems

- House production target

« Muon transport
- Eliminate LOS from target to experiments

- Match beam dynamics solenoid < FFA

« FFATring

- Phase rotation — monochromator

e Induction linac

- Reduce bunch energy to minimize target thickness
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The key enabling technology for AMF

is the PRISM FFA " o P\ Honenergy

Advanced Phase

« Phase Rotated Intense Source of Muons

-
E‘ﬁ -
- High intensity, short duration proton pulses produce muons E o
with short time duration, but large momentum spread i
- Inject muons into FFA o Low Energy
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- Phase rotation reduces momentum spread
Phase
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Chief AMF technical challenges

« Compressor ring
- Kicker rates and rise/fall times limit beam power
- 100Hz — 1kHZz?

« Target and PS

- Concepts for 100kW targets exist
Mu2e-lI

- Compact MW scale targets are a true R&D effort!
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Synergies with muon collider!
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Chief AMF technical challenges

LBNF Target core
16mm x 1.5m x 25kW

Mu2e Target Core
6.3mm x 220mm x 250kW
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Chief AMF technical challenges

B :
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AMF enables a suite of experiments

« The primary motivation for AMF is CLFV physics:

- Muon decay experiments
mu—3e, mu—e gamma
Factor 100 improvement over MEG-II

- Muon conversion experiments
Factor 100-1000 improvement over Mu2e
High-Z targets (very short bunches)

« But there are other possibilities with an intense source!
- Muonium physics
- Muon MDM/EDM source
- MuSR (industrial users?)

- Pions/Kaons

« AMF could potentially feed multiple experiments simultaneously!

£& Fermilab
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Precision Measurements
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Muonium physics

* Mu is the simplest atomic species: U +e- atom

Purely leptonic hydrogen species!

« Rich structure and phenomenology

21

Readily formed
Spectrum understood
Forms molecules!

Decays with free muon lifetime

Lynch | NuFACT 2022
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Precision muonium physics

« 1s-2s transition frequency predicted in QED to 0.6 ppb

- Minimal hadronic contributions!
« Similar story for 1s hyperfine splitting
e Mu-MASS at PSI

- Improve 1S-2S measurement three orders of magnitude

- Improves muon mass determination to 1ppb

« MuSEUM at J-PARC

- Improve hyperfine measurement one order of magnitude — 1ppb

« The combination will determine the Rydberg constant to 4ppt!

£& Fermilab
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Precision muonium physics

Muon g-2
FNAL

= hadronic contribution
— hadronic Ibl contribution
™ New Physics

Mu-MASS
> Avigas

m —_— mu
u —> QED corrections
QED corrections —> Rydberg

weak contribution

2 Fermilab
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Muonium production

« Stop (nearly!) a positive muon beam in a target in vacuum; some of the muonium
will be ejected into the vacuum space

« J-PARC g-2 plans to utilize laser ablated silica aerogel
- This yields of order 1% muonium in vacuum, with thermal momentum distribution

—  Thermal Mu requires cooling for beam formation

« PSI and Fermilab muonium experiments plan to use layers of superfluid helium
on target surfaces

- “Hydrogen” is immiscible in superfluid helium — stopped Mu ejected from the surface with a very
narrow momentum spread (chemical potential)

- Naturally cooled and emitted at 6,300 m/s normal to surface

_ _ Mu from SFHe -
— A superfluid layer can also be used as a slow Mu mirror

g

thermal Mu |

| (300 K) |

0 2 4 6 8 10 12 14 16 18
Velocity [km/s]

Nr. of Mu atoms [a. u.]
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Muonium gravity

« The effect of gravity on antimatter has never been measured!

- We don’t even know the sign of g for antimatter!

« Leming at PSI and MAGE at Fermilab aim to address that

—  Muonium source and mirror

-  Mach-Zehnder interferometer
e« 100nm!

—  Muonium decay trigger detectors
- Signof gin 1 day at 100kHz

- ~month to precision comparison
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Muonium — antimuonium oscillation

* Adouble CLFV process! p+e- < U-e+
e Current limits from MACS at PSl is 8.3 x10' (90%)

pump———x)
« The key insight: muon daughters have Michel magnetic field coils wee T
spectrum (fast!) while the atomic electron has hodoscope Csl—_
spectrum given by binding energy (slow!) MWPC annihilation ||
beam counter photons— |||
« | don’t know of an current active effort, but there SiOytarget -
are people interested in bringing this to Fermilab accelerator  ©
ron
V1] / L collimator
NN v ey e sy ) S
===
W— O o~
_ == 1T
TS separator
L,_71m4,ﬁ~ e
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Muon dipole moments

« The g-2 experiment at Fermilab currently leads the dipole moment space

« J-PARC is developing a new approach to measure MDM and EDM with vastly
different systematics

2 Fermilab
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Muon dipole moments

« The key difference is how they handle this term:

1 B xE
a -
PoN2 1 c
Fermilab J-PARC
v~ 29.3 = p,~3.1GeV EF—0
Can use electric fields to ]Ic:’urely ma}gnetic
focus within the storage ring ocusing, fow
— large ring! momentum possible —
small ring!

2% Fermilab
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Muon dipole moments

Fermilab
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Dipole moments

« Both MDM and EDM can be extracted from the decay positron data

» 8
—  Weak interaction is chiral! = L
« In plane oscillation: MDM T 10 ’V\/\/\/V\/\/\/\/\/\,\MMMMN
o Out-of-plane oscillation:EDM £ 1¢¢
§ g
10°E
104
103
10° Muon g-2 (FNAL) - Run 1
1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 |
0 20 40 60 80 100
Time modulo 102.5 [us]
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Muon dipole moments at J-PARC

« The J-PARC effort also utilizes a novel, low momentum dispersion muon source

3 GeV proton beam
(333 uA)

Graphite target
(20°'mm) Silicon Tracker

S Surface muon beam =3
28 MeV/c, 4x108/s) :
N 66 cm diameter

Muonium Production
\.\ : (300 K - 25 meV=2.3 keV/c)

& N iy Super Precision Magnetic Field

(3T, -1ppm local precision)

Resonant Laser lonization of Muonium
(=108 p*/s)

F @ New Muon g-2/EDM Experiment at
. S J-PARC with Ultra-Cold Muon Beam

2 Fermilab
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Muon dipole moments at J-PARC

« J-PARC data taking: mid-decade
« MDM Precision goal is BNL scale: 450ppb

- Completely different systematics!!!

« EDM Precision goal is 100 improvement on BNL
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“Practical” applications
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Muon catalyzed fusion
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Muon catalyzed fusion

Key parameters that control

breakeven:

« Muon production energy
budget

« Cycling rate

« Sticking fraction
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Muon catalyzed fusion — cycling rate
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Muon catalyzed fusion — sticking fraction
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Muon catalyzed fusion — renewed interest?

« Recent (2022!) theoretical and experimental work from Japan

« New measurements of sticking and cycling rates funded by ARPA-E
- Measurement campaign on DD at PSI
— LDRD funded LEM beamline at Fermilab MTA for DT campaign

*  Will be available for other work ... muonium? uSR?
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Muon catalyzed fusion - MTA
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Remote sensing and tomography

Muons for Smence and Secunty (MuSZ)

*
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Backgroung:phofo Fem-’ab

DARPA is interested in fundlng development for a compact, 10-100GeV
muon source of “useful intensity” utilizing Laser Plasma Acceleration.

https://www.darpa.mil/news-events/2022-07-22
$& Fermilab
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What a time to be a muon physicist!
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