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The future of experimental muon physics is bright!

● There is so much going on and proposed, I will only have time to hit a few of the 
highlights:

– Flavor
● CLFV
● LNV

– Precision measurements
● Spectroscopy
● Antimatter gravity
● Dipole moments

– Practical applications
● Energy applications
● Remote sensing and tomography

● This talk is heavily influenced by my personal interests, and is not endorsed by anyone, 
including my family, my pets, and perhaps not even future self … I have inevitably left out 
your favorite experiment.
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Prediction is very 
difficult, especially if 
it’s about the future!

Neils Bohr
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Physics of flavor



5 Lynch | NuFACT 2022

Charged Lepton Flavor Violation

However, the predicted SM rates are 
unobservably small:

Any CLFV (or LNV) observation must be new physics!

Although it has never been observed, we know that cLFV must 
occur, even in the Standard Model, through neutrino loop effects.
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Muons could have a lot to tell us about CLFV

This insight is certainly not new…
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This insight is certainly not new…

1947: 
Pontecorvo 
and Hincks

1962:
Lederman, 
Schwartz, 
and 
Steinberger
1988 Nobel
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Muons could have a lot to tell us about CLFV

We know the Standard Model is incomplete, 
and attempts to fix it generically introduce 
flavor violation, particularly in the muon sector.
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In many channels, we know how to do better in the future (in some cases 
much better) than we can today

Surface muon beams “High” energy beams

There are a large number of 
experiments proposed to further address 
these channels; I apologize for only 
mentioning those I’m involved with.

Double CLFV!

CLFV and LNV!
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Mu2e-II in the 2030s

● Mu2e-II would be a “minimal” evolution of Mu2e with targeted upgrades to 
achieve an additional factor of 10 improvement in sensitivity

Upgraded detectors

Different stopping materials

100kW PIP-II beam power

Upgraded target
and shielding
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Mu2e-II in the 2030s

● The key enabling technology is PIP-II
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Mu2e-II in the 2030s

● The key enabling technology is PIP-II
– It’s being built for LBNF/DUNE, but 99% of its capacity will be un-utilized!
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AMF: an advanced muon facility for Fermilab beyond Mu2e-II

● Utilize the available proton beam enabled by PIP-II that will be unused by 
LBNF/DUNE – up to 1MW

● Provide a flexible facility for future experiments after the current muon program 
has run its course

● Build on synergies with the dark matter and muon collider communities
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AMF enabling technologies

● PIP-II
– Proton source

● Proton compressor ring
– Convert CW beam to intense proton pulses

● Production solenoid and target systems
– House production target

● Muon transport
– Eliminate LOS from target to experiments

– Match beam dynamics solenoid ↔ FFA

● FFA ring
– Phase rotation → monochromator

● Induction linac
– Reduce bunch energy to minimize target thickness



15 Lynch | NuFACT 2022

The key enabling technology for AMF 
is the PRISM FFA

● Phase Rotated Intense Source of Muons
– High intensity, short duration proton pulses produce muons 

with short time duration, but large momentum spread

– Inject muons into FFA

– Phase rotation reduces momentum spread

– Monochromatic muon bunches

– Eliminate pion contamination

– Extract beam to experiments
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Chief AMF technical challenges

● Compressor ring
– Kicker rates and rise/fall times limit beam power

– 100Hz → 1kHz?

● Target and PS
– Concepts for 100kW targets exist

● Mu2e-II

– Compact MW scale targets are a true R&D effort!   Synergies with muon collider!
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Chief AMF technical challenges

LBNF Target core 
16mm x 1.5m x 25kW

Mu2e Target Core
6.3mm x 220mm x 250kW
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Chief AMF technical challenges

● A 6-cell large-acceptance FFA ring has been demonstrated at Osaka
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AMF enables a suite of experiments

● The primary motivation for AMF is CLFV physics:
– Muon decay experiments

● mu→3e, mu→e gamma
● Factor 100 improvement over MEG-II

– Muon conversion experiments
● Factor 100-1000 improvement over Mu2e
● High-Z targets (very short bunches)

● But there are other possibilities with an intense source!
– Muonium physics

– Muon MDM/EDM source

– MuSR (industrial users?)

– Pions/Kaons

● AMF could potentially feed multiple experiments simultaneously!
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Precision Measurements
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Muonium physics

● Mu is the simplest atomic species:  μ+e- atom
– Purely leptonic hydrogen species!

● Rich structure and phenomenology
– Readily formed

– Spectrum understood

– Forms molecules!

– Decays with free muon lifetime
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Precision muonium physics

● 1s-2s transition frequency predicted in QED to 0.6 ppb
– Minimal hadronic contributions!

● Similar story for 1s hyperfine splitting
● Mu-MASS at PSI

– Improve 1S-2S measurement three orders of magnitude

– Improves muon mass determination to 1ppb

● MuSEUM at J-PARC
– Improve hyperfine measurement one order of magnitude – 1ppb

● The combination will determine the Rydberg constant to 4ppt!
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Precision muonium physics
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Muonium production

● Stop (nearly!) a positive muon beam in a target in vacuum; some of the muonium 
will be ejected into the vacuum space

● J-PARC g-2 plans to utilize laser ablated silica aerogel
– This yields of order 1% muonium in vacuum, with thermal momentum distribution

– Thermal Mu requires cooling for beam formation

● PSI and Fermilab muonium experiments plan to use layers of superfluid helium 
on target surfaces

– “Hydrogen” is immiscible in superfluid helium → stopped Mu ejected from the surface with a very 
narrow momentum spread (chemical potential)

– Naturally cooled and emitted at 6,300 m/s normal to surface

– A superfluid layer can also be used as a slow Mu mirror
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Muonium gravity

● The effect of gravity on antimatter has never been measured!
– We don’t even know the sign of g for antimatter!

● Leming at PSI and MAGE at Fermilab aim to address that
– Muonium source and mirror

– Mach-Zehnder interferometer
● 100nm!

– Muonium decay trigger detectors

– Sign of g in 1 day at 100kHz

– ~month to precision comparison
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Muonium – antimuonium oscillation

● A double CLFV process!   μ+e- ↔ μ-e+ 
● Current limits from MACS at PSI is 8.3 x10-11 (90%)
● The key insight: muon daughters have Michel 

spectrum (fast!) while the atomic electron has 
spectrum given by binding energy (slow!)

● I don’t know of an current active effort, but there 
are people interested in bringing this to Fermilab
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Muon dipole moments

● The g-2 experiment at Fermilab currently leads the dipole moment space
● J-PARC is developing a new approach to measure MDM and EDM with vastly 

different systematics

MDM EDM
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Muon dipole moments

● The key difference is how they handle this term:

Fermilab

Can use electric fields to 
focus within the storage ring 
→ large ring!

J-PARC

Purely magnetic 
focusing, low 
momentum possible → 
small ring!
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Muon dipole moments

Fermilab J-PARC
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Dipole moments

● Both MDM and EDM can be extracted from the decay positron data
– Weak interaction is chiral!

● In plane oscillation: MDM
● Out-of-plane oscillation:EDM
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Muon dipole moments at J-PARC

● The J-PARC effort also utilizes a novel, low momentum dispersion muon source
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Muon dipole moments at J-PARC

● J-PARC data taking: mid-decade
● MDM Precision goal is BNL scale: 450ppb

– Completely different systematics!!!

● EDM Precision goal is 100 improvement on BNL
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“Practical” applications



34 Lynch | NuFACT 2022

Muon catalyzed fusion
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Muon catalyzed fusion

Key parameters that control 
breakeven:
● Muon production energy 

budget
● Cycling rate
● Sticking fraction
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Muon catalyzed fusion – cycling rate
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Muon catalyzed fusion – sticking fraction
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Muon catalyzed fusion – renewed interest?

● Recent (2022!) theoretical and experimental work from Japan
● New measurements of sticking and cycling rates funded by ARPA-E

– Measurement campaign on DD at PSI

– LDRD funded LEM beamline at Fermilab MTA for DT campaign
● Will be available for other work … muonium?  μSR?
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Muon catalyzed fusion - MTA
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Remote sensing and tomography

DARPA is interested in funding development for a compact, 10-100GeV 
muon source of “useful intensity” utilizing Laser Plasma Acceleration.

https://www.darpa.mil/news-events/2022-07-22
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What a time to be a muon physicist!


