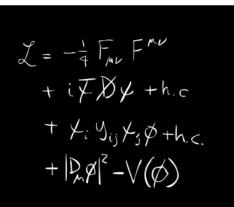


Overview of cLFV in the muon sector

Jonathan Kriewald LPC Clermont-Ferrand

NuFACT 2022, August 3rd 2022 @Snowbird


Flavour violation in SM

que de Clermont

Flavour and CP violation: SM

Flavour in the Standard Model: interactions (and transitions) between fermion families

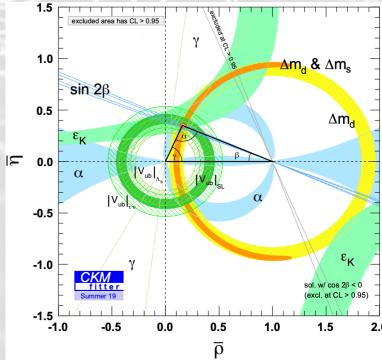
Gauge interactions are flavour universal

Yukawas Y_{ij}^{u} , Y_{ij}^{d} and Y_{ij}^{ℓ} encode all flavour dynamics

(Masses, mixings and CP violation)

SM quark sector:

6 massive states


flavour violated in charged current interactions $V^{ij}_{CKM}W^{\pm}\bar{q}_iq_j$

total baryon number is conserved in SM interactions CP violation: δ_{CKM} and θ_{OCD}

(not enough to explain BAU from baryogenesis)

CKM paradigm extensively probed:

Meson oscillations & decays, β decays, CP violation...

Flavour violation in SM

u N CH Au

Flavour and CP violation: SM

Flavour in the Standard Model: interactions (and transitions) between fermion families

Gauge interactions are flavour universal

Yukawas Y_{ij}^{u} , Y_{ij}^{d} and Y_{ij}^{ℓ} encode all flavour dynamics

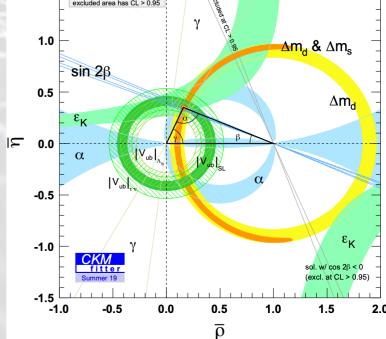
(Masses, mixings and CP violation)

SM quark sector:

6 massive states

flavour violated in charged current interactions $V^{ij}_{
m CKM}W^{\pm}ar{q}_iq_j$

total baryon number is conserved in SM interactions CP violation: δ_{CKM} and θ_{QCD} (not enough to explain BAU from baryogenesis)


CKM paradigm extensively probed:

Meson oscillations & decays, β decays, CP violation...

SM lepton sector: neutrinos are strictly massless

Conservation of (total) lepton number and lepton flavour

- Lepton flavour universality only broken by Yukawas
- No intrinsic CPV sources (tiny) lepton EDMs @ 4-loop

Flavours: beyond SM

Lepton flavour and CP violation beyond SM PAUL SCHERRER INSTITUT Strong arguments in f(l)avour of New Physics!

Observations unaccounted for in SM: ν -oscillations, Dark matter,

baryon asymmetry of the Universe

(also some theoretical caveats...)

How to unveil the NP model at work?

⇒Test SM symmetries with flavour observables:

(c)LFV, lepton flavour universality violation, ...

Flavours: beyond SM

Lepton flavour and CP violation beyond SM PAUL SCHERRER INSTITUT Strong arguments in f(l)avour of New Physics!

Observations unaccounted for in SM: ν -oscillations, Dark matter,

baryon asymmetry of the Universe

(also some theoretical caveats...)

How to unveil the NP model at work?

⇒Test SM symmetries with flavour observables:

(c)LFV, lepton flavour universality violation, ...

 ν -oscillations 1st laboratory *evidence* of New Physics!

- New mechanism of mass generation? Majorana fields?
- New sources of **CP violation**?

Flavours: beyond SM

Lepton flavour and CP violation beyond SM PAUL SCHERRER INSTITUT Strong arguments in f(l)avour of New Physics!

Observations unaccounted for in SM: ν -oscillations, Dark matter,

baryon asymmetry of the Universe

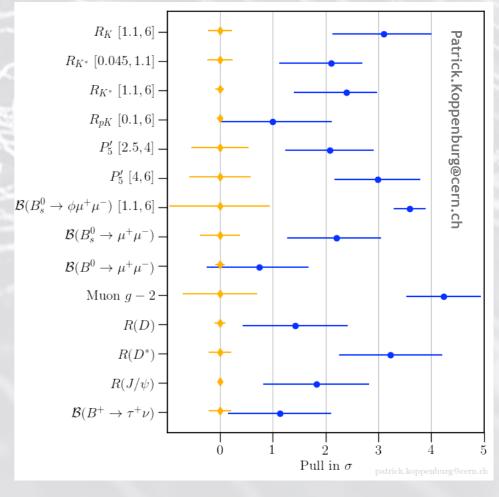
(also some theoretical caveats...)

How to unveil the NP model at work?

⇒Test SM symmetries with flavour observables:
(c)LFV, lepton flavour universality violation, ...

 ν -oscillations 1st laboratory *evidence* of New Physics!

- New mechanism of mass generation? Majorana fields?
- New sources of **CP violation**?


Currently many tensions with SM related to charged leptons

 $(g-2)_{\mu,e}$, B-meson anomalies, ...

Muons are uniquely versatile and sensitive probes of NP!

- Abundantly available, many different observables
- Unprecedented future experimental prospects

(See talks by Angela Papa & Kevin Lynch, and maaaaany WG4 contributions)

 W^{-}

 ν_L

 U_{jk}^*

Lepton flavour probes of New Physics

Neutrinos oscillate \Rightarrow neutral lepton flavour violated, neutrinos are massive, new sources of CPV?

Extend SM to accommodate $\nu_{\alpha} \leftrightarrow \nu_{\beta}$: ad-hoc 3 $\nu_R \Rightarrow$ Dirac masses, "SM_m,", U_{PMNS} In SM_{m_n} : flavour-universal lepton couplings, lepton number conserved cLFV possible ... but not observable! BR($\mu \to e\gamma$) $\propto |\sum U_{\mu i}^* U_{e i} m_{\nu_i}^2 / m_W^2| \simeq 10^{-54}$ (Petcov '77) **EDMs** still tiny... (2-loop from δ_{CP} , $|d_{\ell}| \sim 10^{-35} ecm$)

⇒ any **cLFV signal** would imply **non-minimal New Physics**! (Not necessarily related to m_{ν} generation)

Lepton flavours offer a plethora of observables and probes of New Physics

⇒Negative search results: allow to place tight bounds on New Physics

Jonathan Kriewald LPC

 U_{ik}

Outline

Muons: a gateway for New Physics

- (Dis)entangling cLFV sources
- The probing power of Muons
- Conclusions

Muons: a gateway for New Physics

Jonathan Kriewald LPC

6

Muons in the SM

Muons: a long history

Muon (aka mu-meson or mesotron) discovered in cosmic rays in 1937

Early searches and limits on $\mu(e^*) \rightarrow e\gamma$ decay (Hincks, Pontecorvo 1947)

 \Rightarrow hypothesis of ν_{μ} , second **lepton family**

Since then: μ one of the **best understood SM** particles:

Mass $m_{\mu} = 105.6583755 \pm 0.0000023 \text{ MeV}$, Lifetime $\tau_{\mu} = 2.1969811 \pm 0.0000022 \ \mu\text{s}$ Magnetic moment: $(g - 2)/2 = (11659206.1 \pm 4.1) \times 10^{-10}$ (BNL + FNAL) Electric dipole moment: $|d_{\mu}| \leq 1.8 \times 10^{-19} ecm$ (BNL) For future prospects see WG4 talks

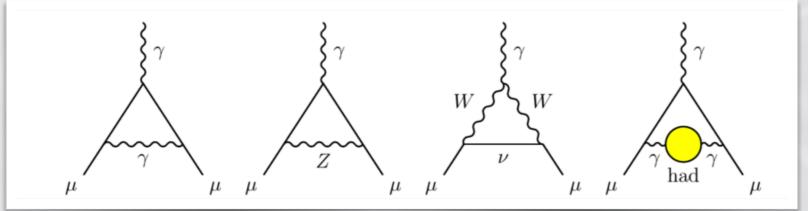
Michel decay: BR($\mu^- \rightarrow e^- \bar{\nu}_e \nu_\mu$) $\approx 100 \%$ (determination of G_F) Rare SM decays: BR($\mu^- \rightarrow e^- \bar{\nu}_e \nu_\mu \gamma$) = (6.0 ± 0.5) × 10⁻⁸ BR($\mu^- \rightarrow e^- \bar{\nu}_e \nu_\mu e^+ e^-$) = (3.4 ± 0.4) × 10⁻⁵

Bound states: Muonium $(\mu^+e^-) \sim QED$ and gravity tests Muonic atoms: search for P violation

Δa_{μ} and New Physics

Anomalous magnetic moments

Magnetic moment: particle's tendency to align with a magnetic field


 $\overrightarrow{\mu_{\ell}} = \mathbf{g_{\ell}} \frac{e}{2 m_{\ell}} \vec{s}$ $\mathbf{g_{\ell}} \sim \text{gyromagnetic ratio (Landé factor)}$ Dirac's prediction: $\mathbf{g_e} = 2$

SM electromagnetic current: $\mathcal{J}_{\mu} = \bar{\ell}(p') \left[\gamma_{\mu} F_{1}(q^{2}) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2m_{\ell}} F_{2}(q^{2}) + \gamma_{5} \frac{i\sigma_{\mu\nu}q^{\nu}}{2m_{\ell}} F_{3}(q^{2}) + \gamma_{5}(q^{2}\gamma_{\mu} - qq_{\mu})F_{4}(q^{2}) \right] \ell(p)$

@ tree-level: $F_1(0) = 1$; $F_{2,3,4}(0) = 0 \Rightarrow g_{\ell} = 2(F_1(0) + F_2(0)) = 2$ @ higher orders: quantum corrections to $F_2(0) \Rightarrow$ anomalous magnetic moment

 $\Delta a_{\ell} = \frac{g_{\ell}-2}{2} = F_2(0)$

Higher-order (SM) corrections from **QED**, **EW** (W^{\pm} , Z and Higgs)

Δa_{μ} and New Physics

Muon anomalous magnetic moment circa 2022

Anomalous magnetic moment of the muon: from theory to experiment and back

 $10^{11} \cdot \Delta a_{\mu}$

1.0

40

18

43

0.104

 $a_{\mu}^{\text{SM}} = \frac{1}{2} \left(g_{\mu} - 2 \right) = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{weak}} + a_{\mu}^{\text{had}} \text{ in conflict with BNL & FNAL? Or not?}$ see WG4 talks for future exp prospects

$$\Delta a_{\mu} = a_{\mu}^{\mathbf{exp}} - a_{\mu}^{\mathbf{SM}} = ?$$

Full **QED** $\mathcal{O}(\alpha^5)$ - 12672 diagrams!

HLbL - recent progress, from

 $10^{11} \cdot a_{\mu}$

116 584 718.931

153.6

92

 $6\,845$

116 591 810

hadronic models to dispersive

framework, 1st LQCD results!

Hadronic: smaller than QED, but dominate theoretical uncertainties!

HVP - evaluated from *dispersion relations* & *data-driven* input from $e^+e^- \rightarrow$ hadrons (a_u "White paper" HVP result)

Rapid LQCD progress!

BMW 2021: $10^{11} \cdot a_{\mu}^{\text{LQCD}} = 7\,075\,(55)$ $\Rightarrow 2.1\sigma \text{ tension }!$

2022: confirmation by Mainz & ETMC

Jonathan Kriewald LPC

QED total

EW

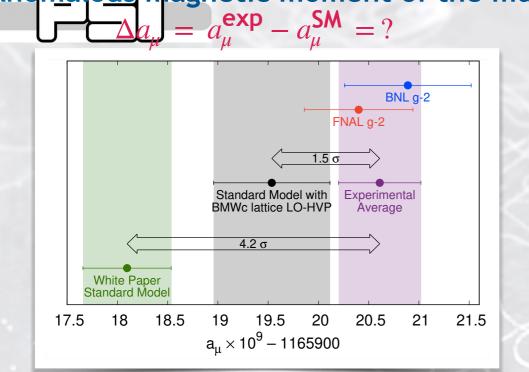
HVP

HLbL

SM total

Δa_{μ} and New Physics

Muon anomalous magnetic moment circa 2022


Anomalous magnetic moment of the muon: from theory to experiment and back

 $a_{\mu}^{\text{SM}} = \frac{1}{2} \left(g_{\mu} - 2 \right) = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{weak}} + a_{\mu}^{\text{had}}$ in conflict with BNL & FNAL? Or not? see WG4 talks for future exp prospects $\Delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{SM} = ?$ Recent LQCD results seem to confirm BMWc Mainz [2206.06582], ETMC [2206.15084] BNL g-2 \Rightarrow New tensions with $e^+e^- \rightarrow$ hadrons scattering FNAL g-2 **New Physics** needed elsewhere? 1.5 σ see e.g. Darmé et al. [2112.09139], Di Luzio et al. [2112.08312] Standard Model with Experimenta BMWc lattice LO-HVP Average **MUonE** experiment to conclusively measure HVP! 4.2 σ see talks by Javad Komijani and Lorenzo Capriotti White Paper Standard Model New Physics needed for g - 2? or not? 21.5 19 19.5 20 20.5 21 17.5 18.5 18 $a_{\mu} \times 10^9 - 1165900$ $\mathscr{H}_{\text{eff}}^{\text{NP}} \sim \frac{C_{a_{\mu}}^{\text{o}}}{\Lambda^{2}_{\text{up}}} \left(\bar{\Psi}_{\mu} \sigma_{\alpha\beta} \Psi_{\mu} \right) F^{\alpha\beta} H$ If $\Delta a_{\mu} \sim \mathcal{O}(\text{few } \sigma) \approx 2 \times a_{\mu}^{\text{SM}}$, weak $\Rightarrow \Delta a_{\mu} \approx \frac{C_{a_{\mu}}^{6}}{\Lambda_{\text{ND}}^{2}} (m_{\mu} \text{v}) \qquad \qquad \text{Loop-induced, chirality-flipping,} \\ \text{Typically } \Lambda_{\text{NP}} \sim \text{few} \times 100 \text{ GeV}$ ⇒ Huge impact for **flavour pheno**! Typically $\Lambda_{\rm NP} \sim {\rm few} \times 100 \; {\rm GeV}$ For recent "model survey" see e.g. Athron et al. [2104.03691] Jonathan Kriewald LPC August 3rd 2022 10

$\Delta a_{\mu,e}$ and New Physics

Anomalous magnetic moment of the muon

Recent experimental progress on $\alpha_e \& a_e$: (2018) $\Delta a_e^{\text{Cs}} = -0.88(36) \times 10^{-12} \sim -2.3\sigma$ (2020) $\Delta a_e^{\text{Rb}} = +0.48(30) \times 10^{-12} \sim +1.7\sigma$

Lepton universality (MFV) suggests:

$$\Delta a_e / \Delta a_\mu \simeq m_e^2 / m_\mu^2 = +2.4 \times 10^{-5}$$

But $\Delta a_e^{Cs} / \Delta a_{\mu} = -3.3 \times 10^{-4} !$

New Physics: badly needed? or not?

Difference of **5.4** σ in determination of α_e ???

 \Rightarrow Hint of **violation** of **lepton universality**?

Explaining both $\Delta a_e^{\text{Cs}} \oplus \Delta a_{\mu}$ in simple BSM is very hard... ... but possible! e.g. scalar leptoquarks, axions, light Z', etc.

NR

αg

Lepton flavour universality

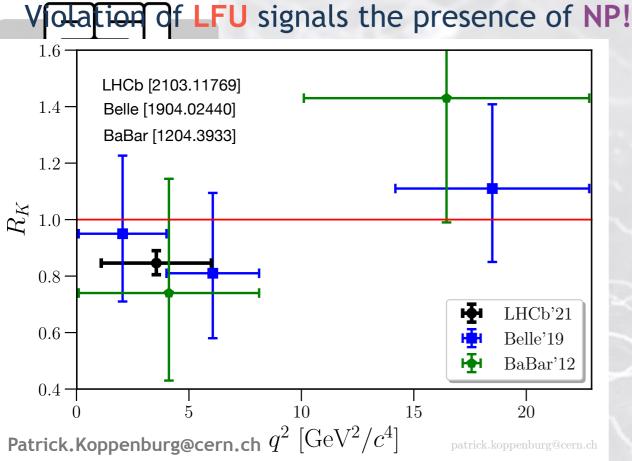
Accidental "symmetry" in the SM: couplings of electroweak gauge bosons are "blind" to lepton flavour \Rightarrow Lepton Flavour Universality (LFU)

- Violation of LFU also signals the presence of NP!
 - Construct observables sensitive to LFUV:

 \Rightarrow Compare flavour-dependent rates of charged and neutral current transitions ρ

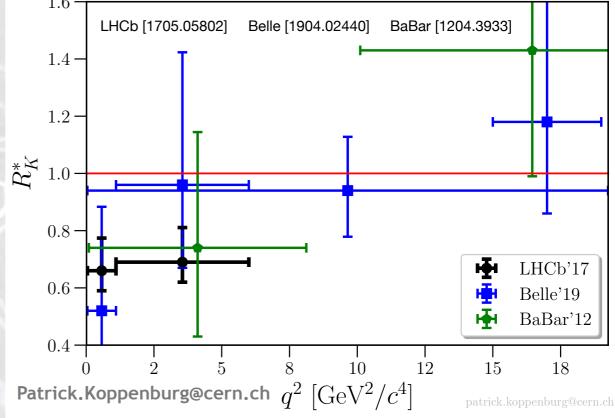
e.g. ratios of EW gauge boson decays:

 \Rightarrow Place strong bounds on New Physics: e.g. neutrino mass models modifying W-vertex ...


13

Lepton flavour universality: leptonic meson decays Accidental "symmetry" in the SM: couplings of electroweak gauge bosons are "blind" to lepton flavour \Rightarrow Lepton Flavour Universality (LFU) Violation of LFU also signals the presence of NP! Construct observables sensitive to LFUV: 20 Zq **Kaon sector:** $R_K^{\ell} = \frac{\Gamma(K \to e\nu)}{\Gamma(K \to \mu\nu)} \propto \frac{m_e^2}{m^2}$ $R_{K}^{SM} = (2.477 \pm 0.001) \times 10^{-5}$ [Cirigliano et al. '07] $R_{\nu}^{\text{exp}} = (2.488 \pm 0.009) \times 10^{-5}$ [NA62] ⇒New Physics contributions can be **Pion sector:** $R_{e/\mu}^{\pi} = \frac{\Gamma(\pi \to e\nu(\gamma))}{\Gamma(\pi \to \mu\nu(\gamma))}$ at most $\mathcal{O}(10^{-3})!!!$ $R_{\pi}^{\text{SM}} = (1.2354 \pm 0.0002) \times 10^{-4}$ $R_{\pi}^{exp} = (1.2327 \pm 0.0023) \times 10^{-4}$ [PiENu] (Similar observables for τ decays...) Jonathan Kriewald LPC August 3rd 2022

Lepton flavour universality: semi-leptonic mesor <u>LHCb</u>ys

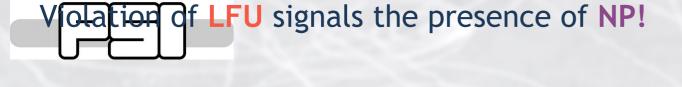


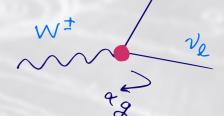
Theoretically clean: hadronic uncertainties (mostly) cancel in ratios

SM: $R_K = R_{K^*} \simeq 1$

ik∣hef

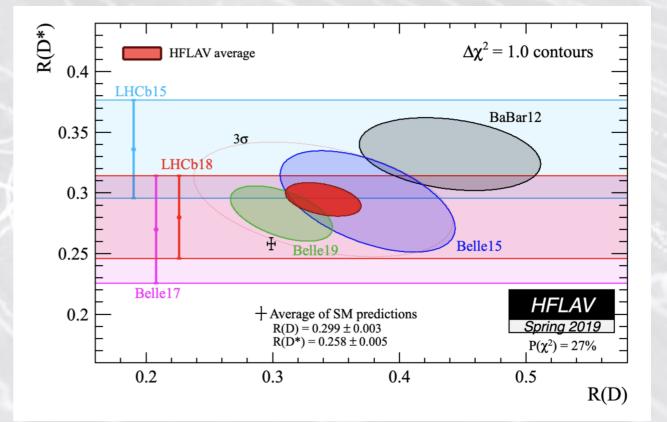
Exp: $R_{K}^{[1.1,6]} = 0.846^{+0.044}_{-0.041}$ [LHCb]


Exp: $R_{K^*}^{[1.1,6]} = 0.69^{+0.11}_{-0.07} \pm 0.05$ [LHCb]


 $\Rightarrow 2 - 3\sigma$ smaller than SM! Hint on LFUV New Physics coupled to muons? (Many other observables in $b \rightarrow s\ell\ell$ also in tension with SM)

See ATLAS, Belle II and LHCb talks in WG4!

Lepton flavour universality: semi-leptonic meson decays



(mostly) cancel in ratios

Theoretically clean: hadronic uncertainties

SM: $R_D \simeq 0.299 \pm 0.003$, $R_{D^*} \simeq 0.258 \pm 0.005$

Exp: $R_D = 0.340 \pm 0.027 \pm 0.013$ $R_{D*} = 0.295 \pm 0.011 \pm 0.008$

 \Rightarrow combined: ~ 3σ larger than SM! Hint on LFUV New Physics coupled to tau leptons?

See ATLAS, Belle II and LHCb talks in WG4!

Lepton flavour universality: semi-leptonic meson decays Volation of LFU also signals the presence of NP! The S. Glashow '14: "[...] any departure from lepton universality is necessarily associated with the SM: R_D violation of lepton flavour conservation. Exp: / No known symmetry principle can protect the one in the absence of the other" [1411.0565] **R(D)**

 \Rightarrow combined: ~ 3σ larger than SM!

Hint on LFUV New Physics coupled to tau leptons?

See ATLAS, Belle II and LHCb talks in WG4!

CALE FY decays

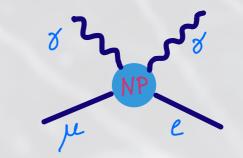
Any **GLFV** signal necessarily implies the presence of New Physics!

cLFV decay $\mu^+ \rightarrow e^+ \gamma$:

Clean event signature: back-to-back $e^+\gamma$, with $E_{\gamma} = E_{e^+} \simeq m_{\mu}/2$

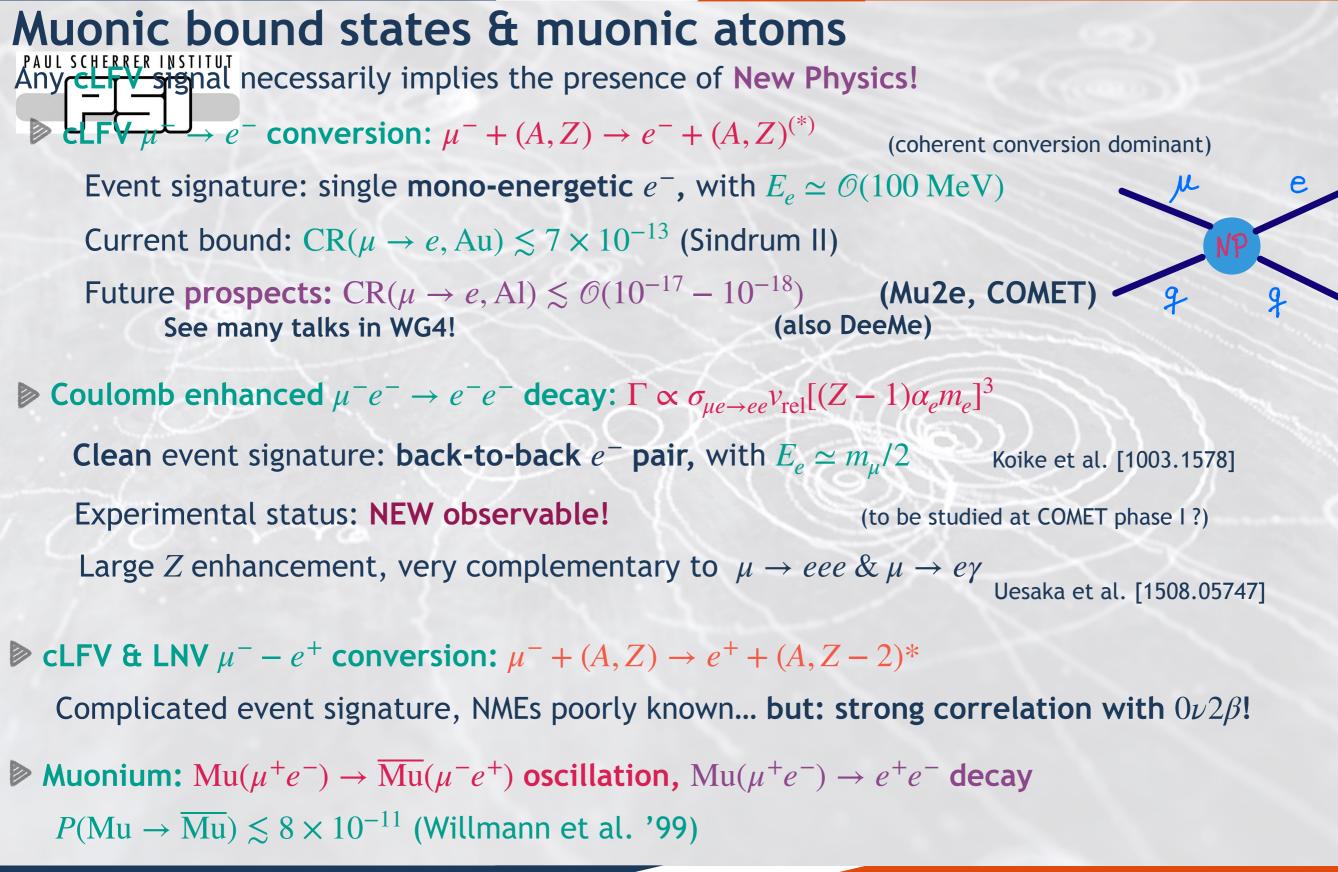
Current bound: $BR(\mu \to e\gamma) \lesssim 4.2 \times 10^{-13}$ (MEG) Future prospects: $BR(\mu \to e\gamma) \lesssim 6 \times 10^{-14}$ (MEG II) (see also WG4 talk by Dylan Palo)

cLFV decay
$$\mu^+ \rightarrow e^+ e^- e^+$$
:


Event signature: **3 electrons in coincidence,** with $\sum p_e = (m_\mu, \vec{0})^T$

Current bound: $BR(\mu \rightarrow eee) \leq 1 \times 10^{-12}$ (Sindrum) Future prospects: $BR(\mu \rightarrow eee) \leq 10^{-15(16)}$ (Mu3e) (Section 2.10)

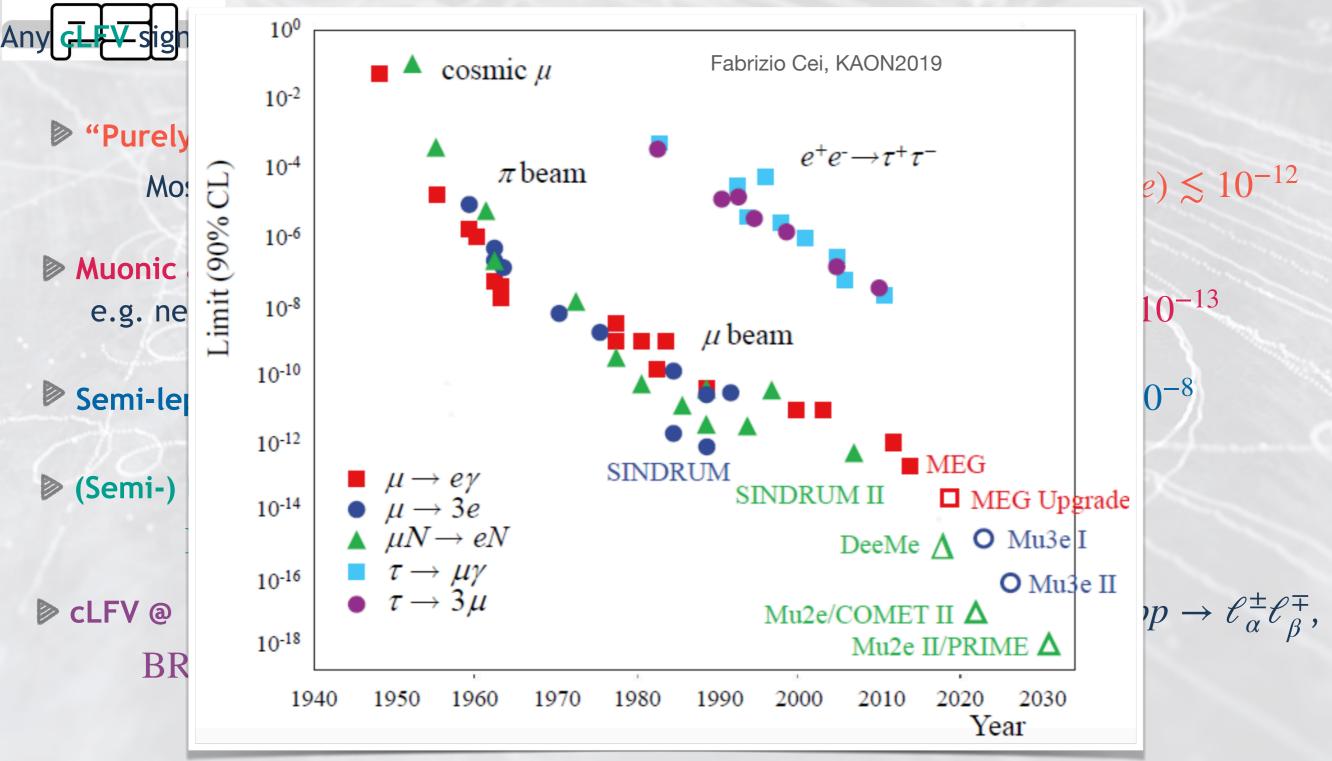
(see also WG4 talk by Ann-Kathrin Perrevoort)


More cLFV decays:

$$\mu^+ \rightarrow e^+ \gamma \gamma, \mu^+ \rightarrow e^+ X(\rightarrow \gamma \gamma, e^+ e^-), \mu \rightarrow ea$$
 (ALPs), ..

CLEASER ER DESERVABLES ACROSS All sectors and energies Any GLE Signal necessarily implies the presence of New Physics!

Purely "leptonic cLFV observables: $\ell_{\beta} \rightarrow \ell_{\alpha} \gamma, \ell_{\beta} \rightarrow \ell_{\alpha} \ell_{\gamma} \ell_{\gamma'}$ Most stringent exp. bounds: $BR(\mu \rightarrow e\gamma) \leq 4.2 \times 10^{-13}, BR(\mu \rightarrow eee) \leq 10^{-12}$


Muonic atoms: many "nuclear-assisted" cLFV observables e.g. neutrinoless $\mu - e$ conversion ($\mu^- N \rightarrow e^- N$) : $CR(\mu - e, Au) \leq 7 \times 10^{-13}$

Semi-leptonic cLFV τ decays: $\tau \to P\ell', \tau \to V\ell'$; $BR(\tau \to \phi\mu) \lesssim 8.4 \times 10^{-8}$

 $\begin{aligned} & \textbf{(Semi-) leptonic cLFV meson decays: } M \to \ell_{\alpha}^{\pm} \ell_{\beta}^{\mp}, M \to M' \ell_{\alpha}^{\pm} \ell_{\beta}^{\mp}; \\ & \text{BR}(K_{L} \to \mu^{\pm} e^{\mp}) \lesssim 4.7 \times 10^{-12}, \text{BR}(B_{(s)} \to \ell_{\alpha}^{\pm} \ell_{\beta}^{\mp}) \lesssim \mathcal{O}(10^{-5}) \\ & \textbf{bigher energies: } Z \to \ell_{\alpha}^{\pm} \ell_{\beta}^{\mp}, H \to \ell_{\alpha}^{\pm} \ell_{\beta}^{\mp}, \text{ high-} p_{T} \text{ di-lepton tails } pp \to \ell_{\alpha}^{\pm} \ell_{\beta}^{\mp}, \\ & \text{BR}(Z \to \ell_{\alpha}^{\pm} \ell_{\beta}^{\mp}) \lesssim \mathcal{O}(10^{-6}) \end{aligned}$

<u>cLFV</u>, <u>observables</u> across all sectors and energies

(Dis)entangling cLFV sources

Peculiar cLFV patterns

w±

CLEVES ignals — correlations matter

Synergy of **cLFV** observables very important: probe different operators/topologies $BR(\mu \rightarrow e\gamma), BR(\mu \rightarrow eee), CR(\mu - e, N)$ correlated by common topologies:

 γ dipoles & anapoles, Z penguins, tree-level contributions,... \Rightarrow 4-fermion operators

Model-dependent: certain topologies dominate, tree-level cont. might be present

lø s	Model	$\mu ightarrow eee$	$\mu N ightarrow eN$	$rac{\mathrm{BR}(\mu ightarrow eee)}{\mathrm{BR}(\mu ightarrow e \gamma)}$	$rac{\mathrm{CR}(\mu N ightarrow e N)}{\mathrm{BR}(\mu ightarrow e \gamma)}$
20	MSSM	Loop	Loop	$pprox 6 imes 10^{-3}$	$10^{-3} - 10^{-2}$
	Type-I seesaw	Loop*	Loop*	$3 \times 10^{-3} - 0.3$	0.1-10
lp	Type-II seesaw	Tree	Loop	$(0.1 - 3) \times 10^3$	$\mathcal{O}(10^{-2})$
w [±] d	Type-III seesaw	Tree	Tree	$pprox 10^3$	${\cal O}(10^3)$
m ~	LFV Higgs	$Loop^\dagger$	Loop ^{*†}	$\approx 10^{-2}$	$\mathcal{O}(0.1)$
Nr Jep	Composite Higgs	Loop*	Loop*	0.05 - 0.5	2 - 20

Calibbi et al. [1709.00294]

study correlations/ratios of cLFV observables, might find peculiar cLFV patterns

 \Rightarrow provide complementary information to direct searches

In EFT: RGE leads to operator mixing, need to consider as many observables as possible to constrain $\mathscr{L}^{\text{eff}} = \mathscr{L}^{\text{SM}} + \frac{\mathscr{C}^5 \, \mathscr{O}^5}{\Lambda_{\text{LNV}}} (m_{\nu}) + \frac{\mathscr{C}^6 \, \mathscr{O}^6}{\Lambda_{\text{CLFV}}^2} (\ell_i \leftrightarrow \ell_j) + \ldots + \frac{\mathscr{C}^9 \, \mathscr{O}^9}{\Lambda_{\text{LNV}}^{\prime 5}} (0\nu 2\beta) + \ldots$ See S. Davidson NuFact 2021

Jonathan Kriewald LPC

August 3rd 2022

Testing m_{ν} with cLFV

Neutrino mass generation

Mechanisms of m_{ν} generation: account for oscillation data

and ideally address SM issues – BAU (leptogenesis), DM candidates, ...

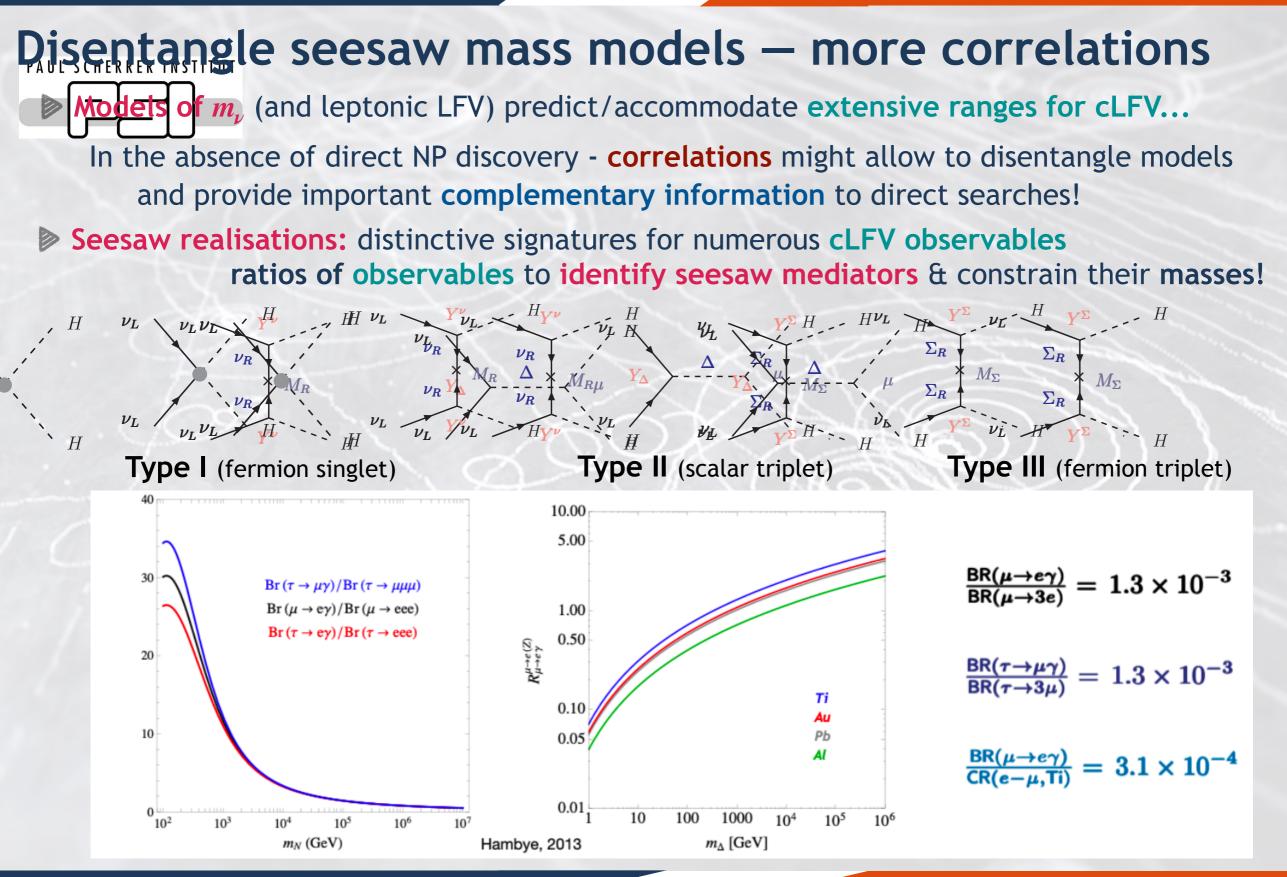
Many well motivated possibilities, featuring distinct NP states (singlets, triplets)

Realised at very different scales $\Lambda_{\rm EW} \rightarrow \Lambda_{\rm GUT}$

⇒ Expect *very* different **phenomenological impact** Compare "vanilla" type I seesaw vs. low-scale seesaw:

See also talk by Julian Heeck tomorrow

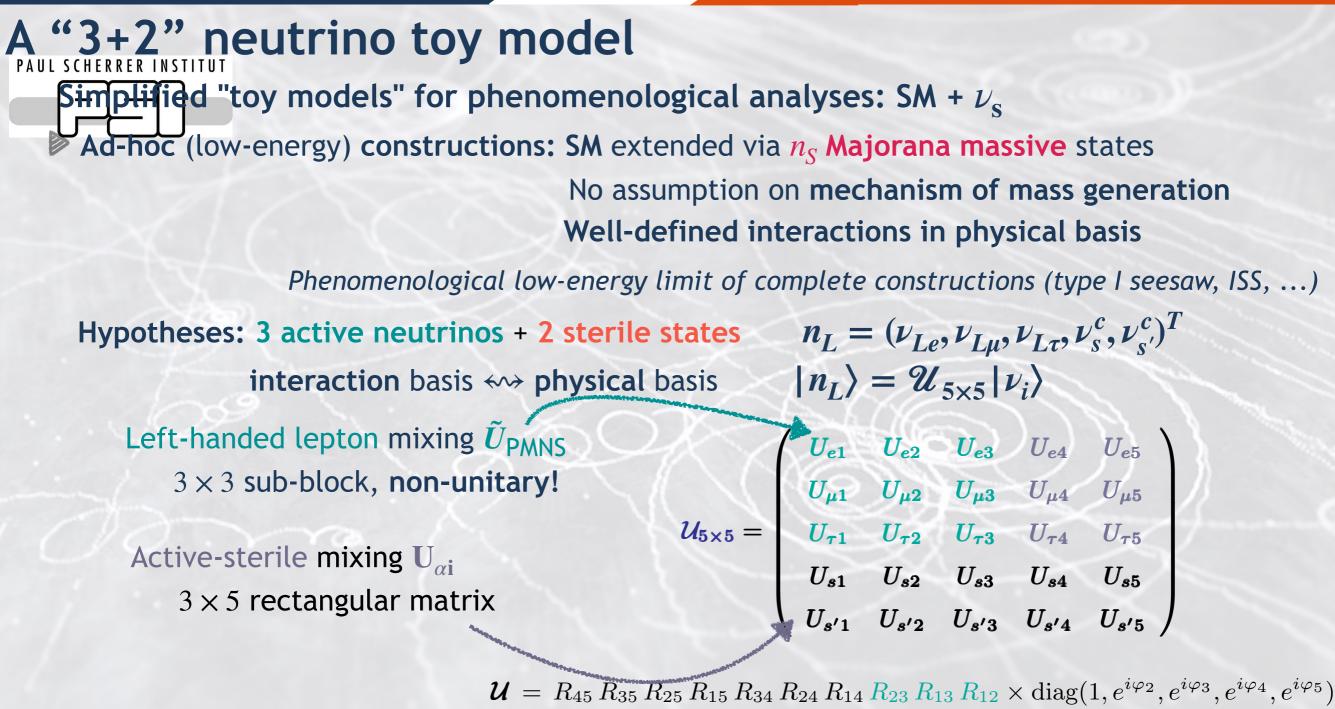
 $O(10^{10-15} \text{ GeV})$ High scale: Theoretically "natural" $Y^{\nu} \sim 1$ "Vanilla" leptogenesis **Decoupled** new states


Low scale: O(MeV - TeV)Finetuning of Y^{ν} (or approximate LN conservation) Leptogenesis possible (resonant, ...) New states within experimental reach! Collider, high-intensities ("leptonic observables")

⇒ low-scale seesaws (and variants): non-decoupled states, modified lepton currents! \Rightarrow rich phenomenology at colliders, high intensities and low energies testability!!

(Also expect tight constraints)

More peculiar patterns



Jonathan Kriewald LPC

August 3rd 2022

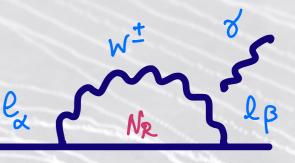
23

Would-be **PMNS** no longer unitary, leptonic W and Z vertices modified

Physical parameters: 5 masses [3 light (mostly active) & 2 heavier (mostly sterile) states] 10 mixing angles, 10 CPV phases (6 Dirac δ_{ii} , 4 Majorana φ_i)

Jonathan Kriewald LPC

August 3rd 2022



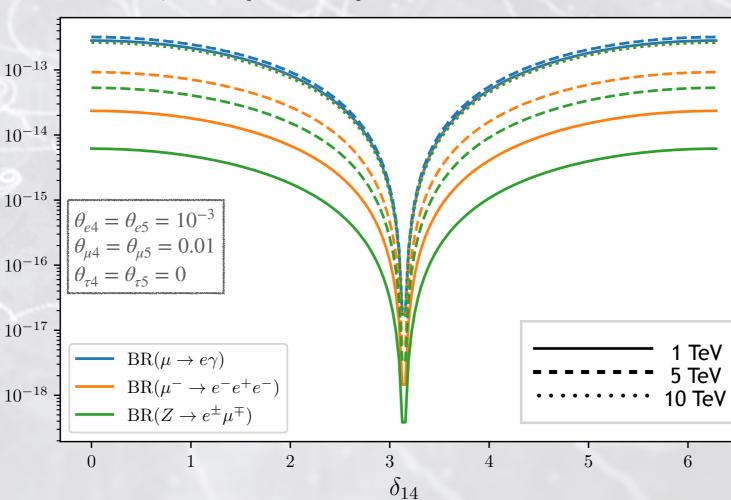
The impact of CP violating phases

CAPTOCESSES mediated by HNL at loop-level Consider "3+2" toy model (addition of 2 heavy sterile states; leptonic mixing $\mathcal{U}_{5\times 5}$, CPV phases)

Radiative decays: BR($\mu \rightarrow e\gamma$) $\propto |G_{\gamma}^{\mu e}|^2$ $G_{\gamma}^{\mu e} = \sum_{i=4.5} \mathcal{U}_{ei} \mathcal{U}_{\mu i}^* G_{\gamma} \left(\frac{m_{N_i}^2}{m_{W}^2}\right)$

Assume (for simplicity & illustrative purposes): $m_4 \approx m_5$ and $\sin \theta_{\alpha 4} \approx \sin \theta_{\alpha 5} \ll 1$ $|G_{\gamma}^{\mu e}|^{2} \approx 4 \sin^{2} \theta_{e4} \sin^{2} \theta_{\mu 4} \cos^{2} \left(\frac{\delta_{14} + \delta_{25} - \delta_{15} - \delta_{24}}{2}\right) G_{\gamma} \left(\frac{m_{N_{i}}^{2}}{m_{W_{i}}^{2}}\right)$

 \Rightarrow Radiative decays: rate depends only on Dirac phases; full cancellation for $\Sigma \delta = \pi$ (Other form factors - more involved expressions, depend also on Majorana phases $\varphi_{4,5}$)



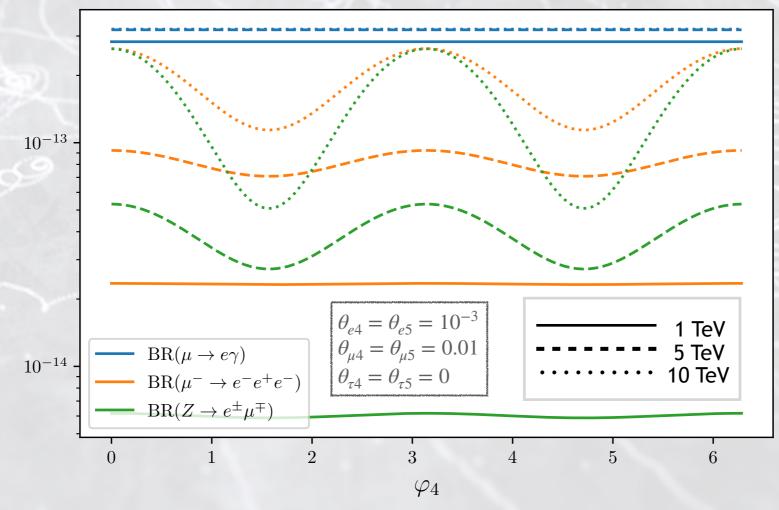
The impact of CP violating phases: Dirac

cLFV processes mediated by HNL at loop-level

Consider "3+2" toy model (addition of 2 heavy sterile states; leptonic mixing $\mathcal{U}_{5\times 5}$, CPV phases)

Abada, JK, Teixeira [2107.06313]

 \Rightarrow Full cancellation of the rates for $\delta_{14} = \pi$, similar results for other (Dirac) phases

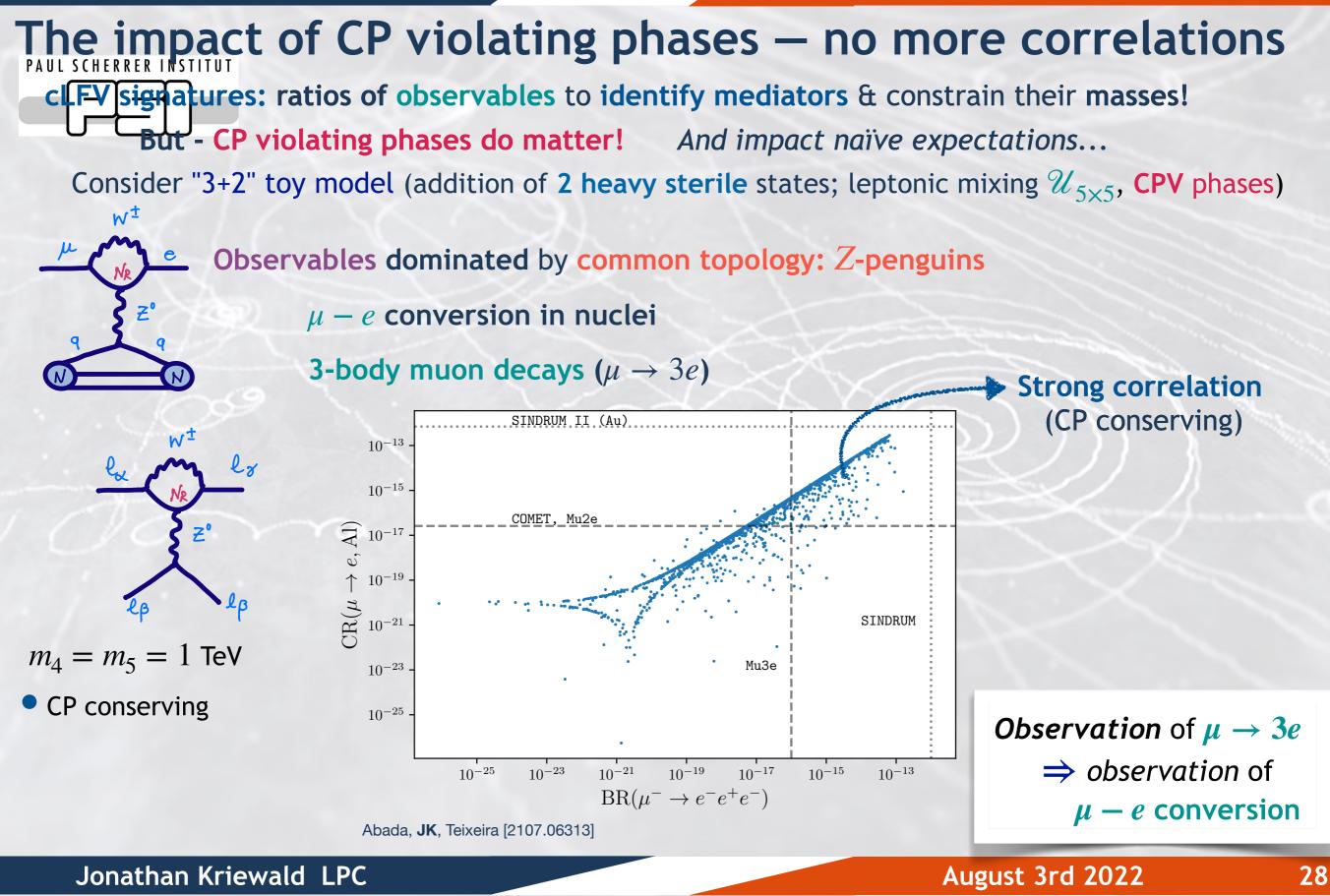


The impact of CP violating phases: Majorana

cLFV processes mediated by HNL at loop-level

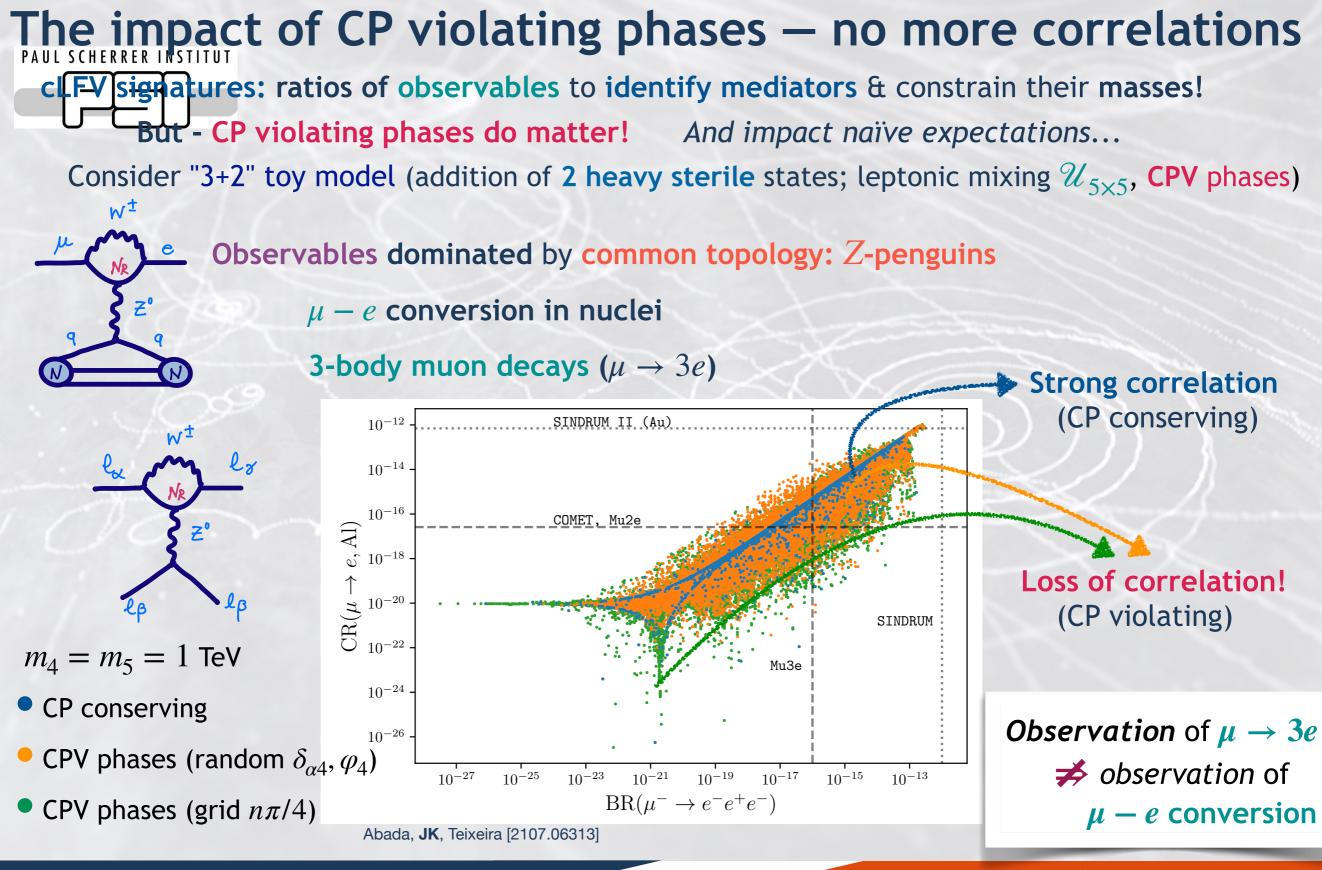
Consider "3+2" toy model (addition of 2 heavy sterile states; leptonic mixing $\mathcal{U}_{5\times 5}$, CPV phases)

Abada, JK, Teixeira [2107.06313]



 \Rightarrow Milder dependence, γ -penguin independent of Majorana phases

cLFV & CP violation



cLFV & CP violation

Jonathan Kriewald LPC

August 3rd 2022

28

The impact of CP violating phases – no more correlations

clFV signatures: ratios of observables to identify mediators & constrain their masses!

But - CP violating phases do matter! And impact naïve expectations...

Some illustrative benchmark points - CP conserving (P_i) and CPV variants (P'_i)

	$BR(\mu \to e\gamma)$	${ m BR}(\mu ightarrow 3e)$	$\operatorname{CR}(\mu - e, \operatorname{Al})$	${ m BR}(au o 3\mu)$	$BR(Z \to \mu \tau)$
P ₁	$3 imes 10^{-16}$ o	$1 imes 10^{-15}$ V	$9 imes 10^{-15}$ \checkmark	$2 imes 10^{-13}$ o	$3 imes 10^{-12}$ o
P'_1	1×10^{-13} \checkmark	$2 imes 10^{-14}$ V	1×10^{-16} V	1×10^{-10} \checkmark	$2 imes 10^{-9}$ 🗸
P_2	$2 imes 10^{-23}$ o	$2 imes 10^{-20}$ o	$2 imes 10^{-19}$ o	1×10^{-10} V	$3 imes 10^{-9}$ 🗸
P_2'	$6 imes 10^{-14}$ \checkmark	$4 imes 10^{-14}$ \checkmark	$9 imes 10^{-14}$ \checkmark	$8 imes 10^{-11}$ \checkmark	$1 imes 10^{-9}$ 🗸
			$3 imes 10^{-9}$ X		
P'_3	$8 imes 10^{-15}$ o	1×10^{-14} \checkmark	$6 imes 10^{-14}$ \checkmark	$2 imes 10^{-9}$ 🗸	$1 imes 10^{-8}$ 🗸

Abada, JK, Teixeira [2107.06313]

 \dot{P}_3 : only cLFV τ decays in allowed region; cLFV μ transitions already experimentally disfavoured Regime of large mixing angles excluded?

 P'_3 : all considered cLFV transitions currently allowed, $\mu \rightarrow e\gamma$ beyond sensitivity!

(Non)-observation of cLFV observable(s) \Rightarrow not necessarily disfavour HNL extension!

cLFV & CP violation

CP-asymmetries

Correlations broken, large mixing angles still possible, how do we "tag" the presence of CPV? Benchmark points (with different mixing) P_1 (CP-conserving), P_2 (CP-violating) lead to identical cLFV predictions!

Observable	$\mu \to eee$	$\mu - e$ (Al)	$ au o \mu \mu \mu$	$Z ightarrow \mu au$
$P_{1,2}$ prediction	2×10^{-15}	$5 imes 10^{-14}$	1×10^{-10}	$2 imes 10^{-10}$

K. Pinsard, Teixeira [2207.10109]

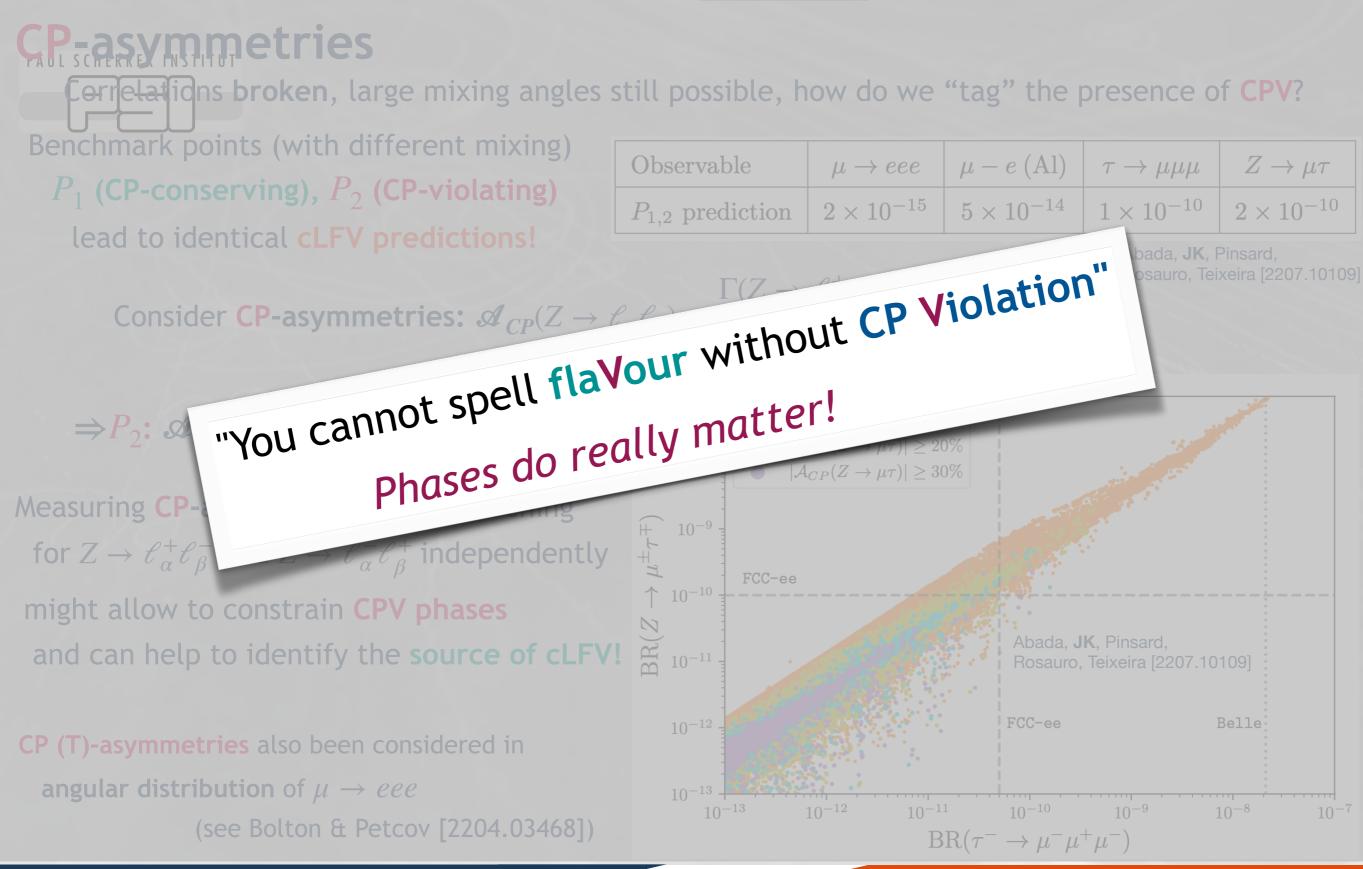
Consider **CP-asymmetries:** $\mathscr{A}_{CP}(Z \to \ell_{\alpha} \ell_{\beta})$

$$\Gamma(Z \to \ell_{\alpha}^{+} \ell_{\beta}^{-}) - \Gamma(Z \to \ell_{\alpha}^{-} \ell_{\beta}^{+}) \xrightarrow{\text{Abada, J}}_{\text{Rosauro, }}$$

 $\Gamma(Z \to \ell_{\alpha}^{+} \ell_{\beta}^{-}) + \Gamma(Z \to \ell_{\alpha}^{-} \ell_{\beta}^{+})$

$$\Rightarrow P_2: \mathscr{A}_{CP}(Z \to \mu\tau) \simeq 30\%!$$

Measuring **CP-asymmetries**, i.e. searching for $Z \to \ell_{\alpha}^+ \ell_{\beta}^-$ and $Z \to \ell_{\alpha}^- \ell_{\beta}^+$ independently might allow to constrain CPV phases and can help to identify the source of cLFV!


CP (T)-asymmetries have also been considered in angular distributions of $\mu \rightarrow eee$ (see Bolton & Petcov [2204.03468])

 10^{-7} $|\mathcal{A}_{CP}(Z \to \mu\tau)| \ge 10\%$ $|\mathcal{A}_{CP}(Z \to \mu\tau)| \ge 20\%$ 10^{-8} $|\mathcal{A}_{CP}(Z \to \mu\tau)| \ge 30\%$ $\underbrace{ \begin{array}{c} \parallel \phantom{} 10^{-9} \\ \parallel \phantom{} \mathcal{H} \\ + \end{array} }_{\ddagger} \mathcal{H} \ \bigstar \ 10^{-10}$ FCC-ee BR(ZAbada, **JK**, Pinsard, 10^{-11} Rosauro, Teixeira [2207.10109] FCC-ee Belle 10^{-12} 10^{-13} 10^{-11} 10^{-12} 10^{-10} 10^{-8} 10^{-13} 10^{-9} 10^{-7} $BR(\tau^- \rightarrow \mu^- \mu^+ \mu^-)$

Jonathan Kriewald LPC

August 3rd 2022

cLFV & CP violation

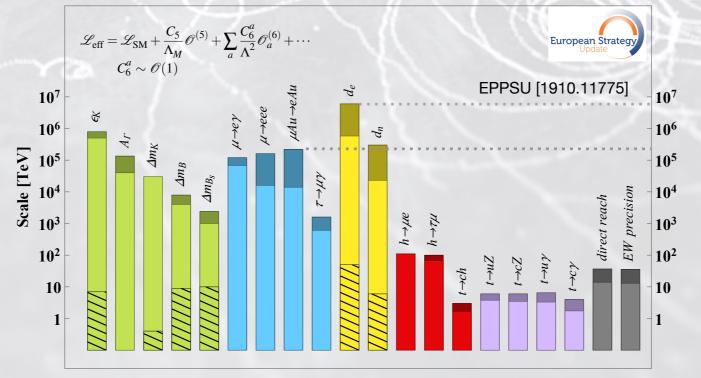
Jonathan Kriewald LPC

August 3rd 2022

The probing power of muons

The probing power of flavour violation

Paving the way to the SM: from prediction of charm to the existence of 3 families!


 \Rightarrow Indirect probes of much higher scales: e.g. top mass in $K^0 - \bar{K}^0$ oscillations

SM interpreted as a low-energy limit of a (complete, yet unknown) NP model

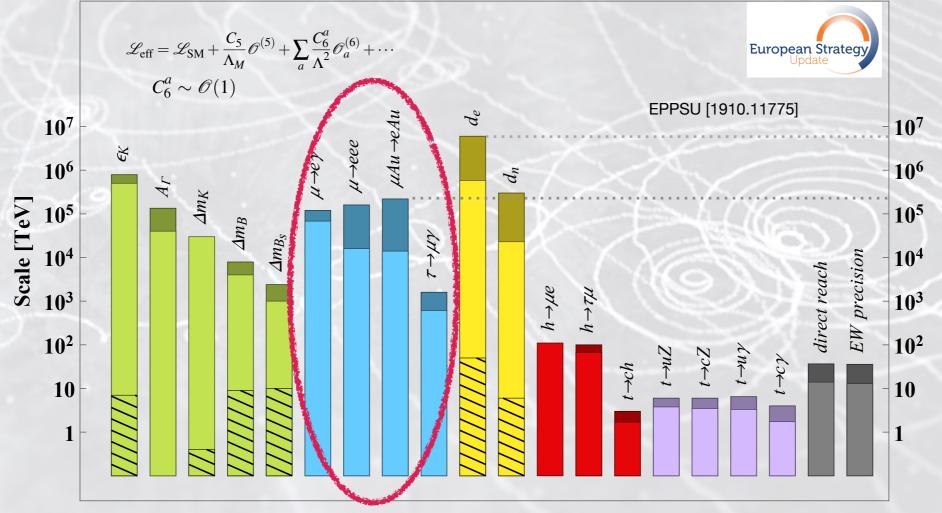
- \Rightarrow Study **various classes** of well-motivated **models**
- Addel-independent, effective approach (EFT)

$$\mathscr{L}^{\text{eff}} = \mathscr{L}^{\text{SM}} + \sum_{n \ge 5} \frac{1}{\Lambda^{n-4}} \mathscr{C}^n(g, Y, \dots) \mathscr{O}^n(\ell, q, H, \gamma, \dots)$$

Cast current data in terms of \mathscr{C}_{ij}^6 and Λ_{NP} : $\mathscr{C}_{ij}^6 \approx 1 \Rightarrow$ bounds on Λ_{NP}

Observable

Probing large scales



The probing power of flavour violation

SM interpreted as a low-energy limit of a (complete, yet unknown) NP model ⇒ Study various classes of well-motivated models

Model-independent, effective approach (EFT)

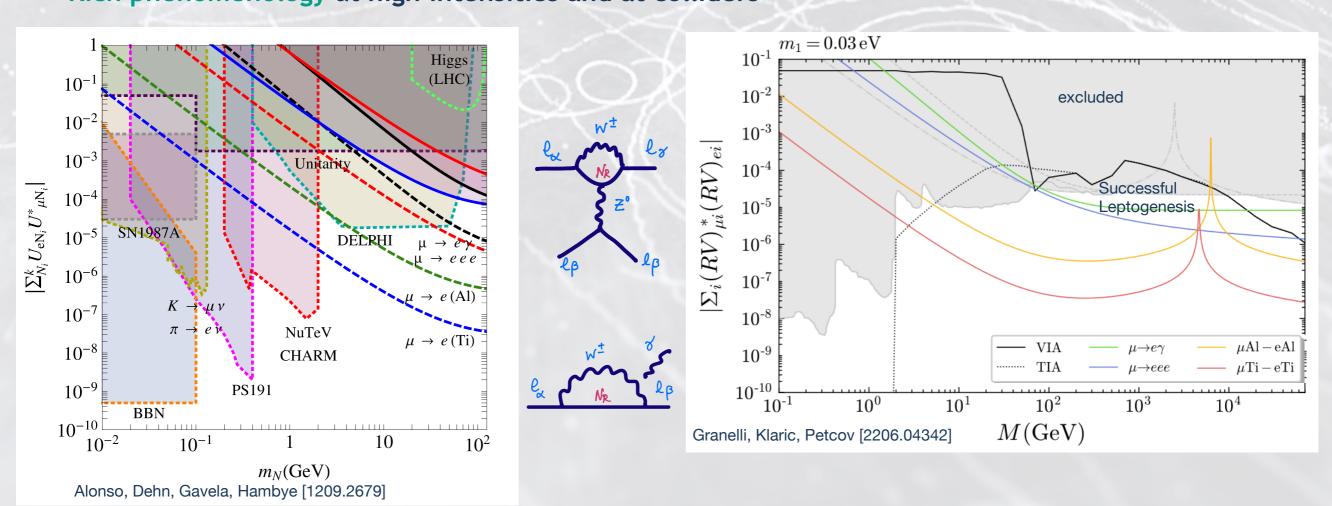
Observable

Probe scales **much higher** than direct collider reach!

⇒possibly **indirect NP signals** long before (direct) discovery LHC...

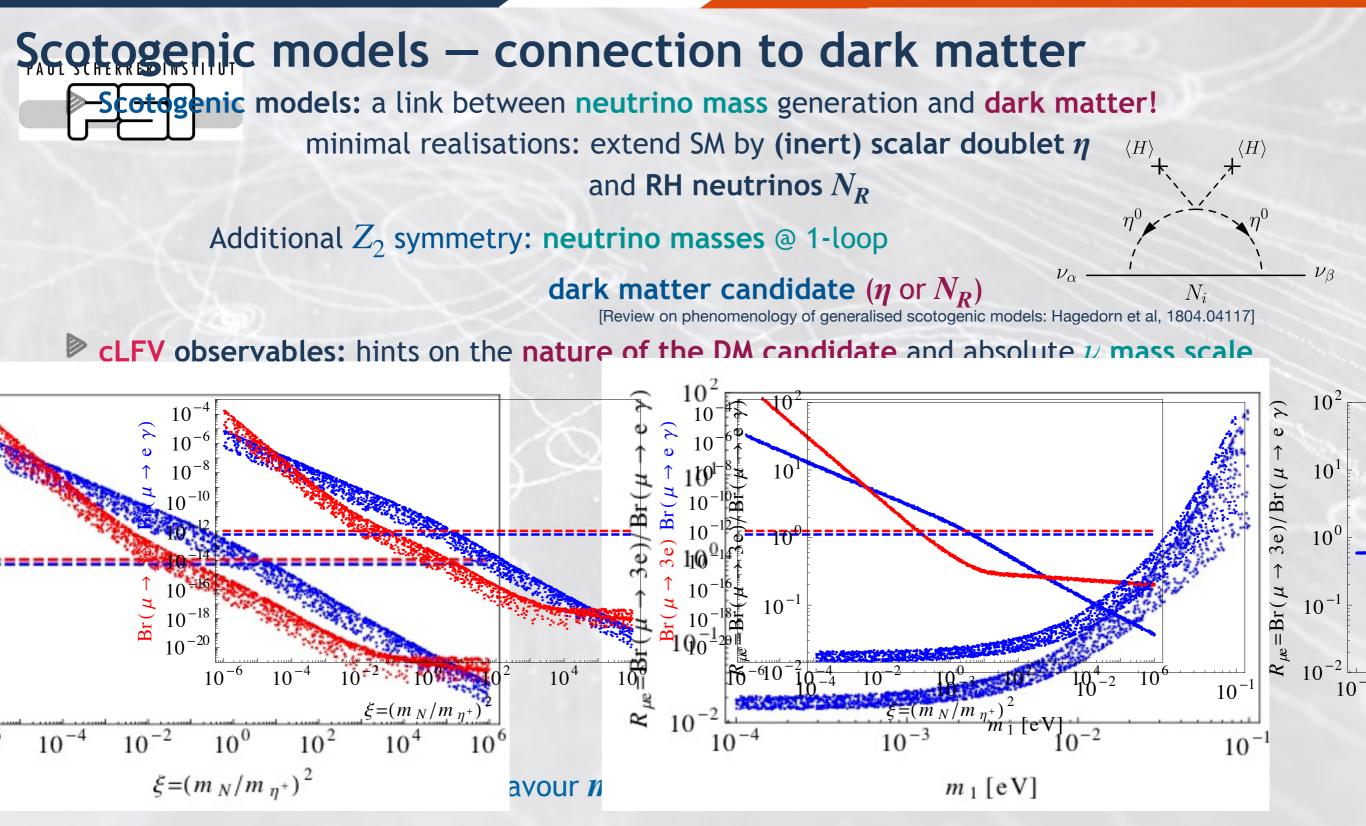
Probing seesaws

Low-scale type I seesaw


Extend SM with 3 "heavy" RH Majorana neutrinos: MeV $\leq m_{N_i} \leq 1 - 100 \text{ TeV}$

1

Spectrum & mixings:

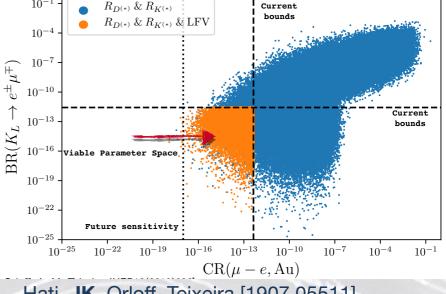

$$egin{split} m{m_{
u}} &\simeq -v^2 Y_{
u}^T m{M_N^{-1}} Y_{
u} \ , & \mathcal{U}^T \mathcal{M}_{
u}^{6 imes 6} \mathcal{U} = ext{diag}(m_i) \ & \mathcal{U} = \left(egin{array}{c} m{U_{
u
u}} & U_{
u N} \ U_{
u N} & U_{
u N} \end{array}
ight) \ , & m{U_{
u
u
u}} \simeq (1 - \eta) m{U_{
eqnumber PMNS}} \end{split}$$

Heavy states do not decouple \Rightarrow neutral and charged leptonic currents modified Rich phenomenology at high intensities and at colliders

Connection to DM

Determination of $R_{\mu e} = BR(\mu \rightarrow 3e)/BR(\mu \rightarrow e\gamma) \Rightarrow$ hints on lightest neutrino mass m_{ν_1}

Jonathan Kriewald LPC


August 3rd 2022

cLFV & leptoquarks

Leptoquarks – flavour anomalies and muon cLFV

A finitual SM extension via single vector LQ (V_1^{μ}) explain both $R_{K^{(*)}}$ and $R_{D^{(*)}}$ at tree-level Strongly constraining observables: $K_L \rightarrow e\mu$ and $\mu - e$ conversion in nuclei \Rightarrow viable regimes within sensitivity of Mu2e and COMET

Hati, **JK**, Orloff, Teixeira [1907.05511]

("Natural" Pati-Salam scales pushed to $\geq 100 \text{ TeV}$)

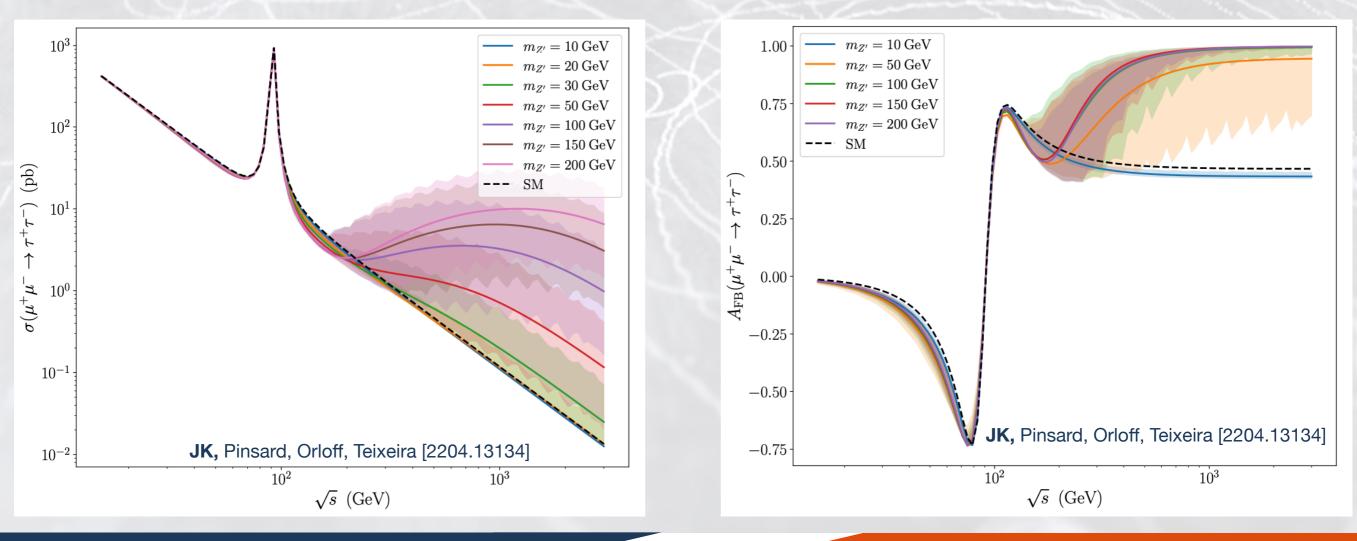
Minimal SM extensions via 1 or 2 scalar LQs: explain both $\Delta a_{\mu} \& \Delta a_{e}$, $\mu \rightarrow e\gamma$ crucial to identify viable scenarios!!! Doršner et al. [2006.11624]

 10^{-4} b. BaBar 10^{-5} $\rightarrow K\mu\tau$ 10^{-6} $\mathcal{B}(B)$ 3 ab^{-1} 10^{-7} $140~{
m fb}^{-1}$ 10^{-8} $m_{U_1} = 1.8 \text{ TeV}$ Belle - IIBelle 10^{-9} 10^{-16} 10^{-14} 10^{-12} 10^{-10} 10^{-8} 10^{-6} Angelescu et al [2103.12504] $\mathcal{B}(\tau \rightarrow \mu \phi)$

cLFV @ muon colliders

Muon cLFV without cLFV @ muon colliders

- Light(ish) Z' with only off-diagonal
- lepton couplings to accommodate Δa_{μ}
- $\mu \rightarrow e\gamma$ and Mu Mu conversion


strongly constrain $e\mu \& e\tau$ couplings

 $\mu\tau$ couplings can be sizeable $\mathcal{O}(10^{-3} - 10^{-2})$

 \Rightarrow new *t*-channel in $\mu^+\mu^- \rightarrow \tau^+\tau^-$ scattering

Interference with huge impact on σ and $A_{FB}!$

Jonathan Kriewald LPC

August 3rd 2022

Concluding remarks

Muons rock!

Concluding remarks

Muons rock!

Currently intriguing hints of New Physics related to muon-flavoured observables

- $(g-2)_{\mu}$ (and $(g-2)_{e}$???) puzzles, rapid EXP and TH progress
- **B**-meson decay anomalies (& $(g-2)_{\mu,e}$) might signify the breakdown of

lepton universality!

LFUV necessarily implies $cLFV! \Rightarrow$ if confirmed, we should expect signals

Concluding remarks

Muons rock!

Currently intriguing hints of New Physics related to muon-flavoured observables

- $(g-2)_{\mu}$ (and $(g-2)_{e}$???) puzzles, rapid EXP and TH progress
- **B**-meson decay anomalies (& $(g-2)_{\mu,e}$) might signify the breakdown of

lepton universality!

LFUV necessarily implies cLFV! \Rightarrow if confirmed, we can be **cautiously** optimistic

Muon (cLFV) observables crucial to probe countless models, many of them related to mechanisms of m_{ν} generation... But: need to consider correlations and effects of CPV to disentangle sources of cLFV

Very exciting future ahead, leave no flavoured stone unturned :)