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Data Reconstruction in Experimental Particle Physics

Big, Monolithic Neutrino Detectors

Outline

1. Neural Networks for Data Reconstruction

2. End-to-end, multi-target object reconstruction
3. Optimization of physics modeling

4. Closing



Data Reconstruction in Experimental Particle Physics

Big, Monolithic Neutrino Detectors
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Data Reconstruction in Experimental Particle Physics

Multi-modal Collider Detectors

e Particle tracking (tracker)
e Energy clustering (calorimeter)
e Particle flow

e.g.) Tracking = finding the right
combination of sampled points

Image courtesy of Exa.Trk. collaboration



Data Reconstruction in Experimental Particle Physics

Machine Learning for Reconstruction/Analysis

Primary goals in my view:

e Fast, accurate, and precise

e Automation of a algorithm tuning (optimization)

e Explainability, re-usability, scalability, and extensibility

... cat?




Data Reconstruction in Experimental Particle Physics

Neural Network for Reconstruction

Convolutional neural network (CNN)

Primarily aimed at image data

Learns spatially local features of various size

Translation invariant (target feature can be anywhere in image)
Image/Pixel level classification/regression, object detection
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Data Reconstruction in Experimental Particle Physics
Neural Network for Reconstruction
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Data Reconstruction in Experimental Particle Physics
Tracking/Clustering @ Calorimetric Neutrino Detector _, , .

P b AN

CNN for pixel-level classification and key point detection
(DeepLearnPhysics for DUNE)

See Phys. Re?D 102, 012005 (2019)

and Phys. Rev. D,J04,632004 (2020) B "



https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032004

Data Reconstruction in Experimental Particle Physics
Tracking/Clustering @ Calorimetric Neutrino Detector
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CNN for pixel-level regression dense clustering
(DeepLearnPhysics for DUNE)

See arxiv:2007:03083 (2020)


https://arxiv.org/abs/2007.03083

Data Reconstruction in Experimental Particle Physics
Tracking/Clustering @ Calorimetric Neutrino Detector

croAn
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CNN for pixel-level regression dense clustering
(DeepLearnPhysics for DUNE)
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Data Reconstruction in Experimental Particle Physics
Tracking/Clustering @ Calorimetric Neutrino Detector
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GNN clustering at two levels: individual particle and interaction
(DeepLearnPhysics for DUNE)

Trajectory fragments are stitched together to form a complete trajectory. Same
algorithm reused to group particles into an interaction
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See Phys. Rev. D 104, 072004 (2020)



https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004?ft=1

Data Reconstruction in Experimental Particle Physics
GNN for Clustering in Calorimeter (CMS HGCAL Simulation) .
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https://arxiv.org/pdf/2203.01189.pdf
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Data Reconstruction in Experimental Particle Physics
Automated optimization for an end-to-end reconstructiop, , .

o e AN

Event reconstruction is inference of high-level physics features

Machine learned %ﬁ

particle flow (MLPF)

o NEg

Baseline PF, adapted from
B. Mangano for CMS, 2013

‘ Graph neural network |

Extract
features
&

HCAL
Clusters

Particle
interaction

& detection

g
o/ ©
True” or Detector PF candidates
generated particles measuremen ts
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Data Reconstruction in Experimental Particle Physics
Automated optimization for an end-to-end reconstructiop, , .

N [ o \

Event reconstruction is inference of high-level physics features
e Multiple modality: input data from multiple detectors
e Multi-task: hierarchical, multi-stages reconstruction

Input [ Pixel Features ] [Particle Instance} [ Correlations ]

Improve explainability by imposing constraints
between stages based on domain knowledge 15



Data Reconstruction in Experimental Particle Physics
Automated optimization for an end-to-end reconstructiop, , .

o Fiy = Tt
PPN B Points Primaries e.g. ML-based (CNN+GNN)
~ F % 4 reco chain for DUNE
l:ﬂ; " f . \ f | (talk by Andrew M. @ CSU)
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M Automation of an end-to-end optimization is
—I' reproducible and save many human-hours otherwise
See ArXiv 2102.01033 (2020) . spent to tune individual algorithms



https://indico.sanfordlab.org/event/28/contributions/342/
https://arxiv.org/abs/2102.01033

ML for Detector Physics Modeling

Automation of physics model tuning
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ML for Detector Physics Modeling

“Fully automation” of reconstruction optimization

The Catch

Supervised optimization with imperfect

simulation may cause a domain shift. S IO e
Manual tuning of simulation is a slow process. |StEE—- B A .


https://arxiv.org/pdf/1412.6572.pdf

ML for Detector Physics Modeling

“Fully automation” of reconstruction optimization

The Catch

Supervised optimization with imperfect

simulation may cause a domain shift. T
Manual tuning of simulation is a slow process. |GG D . ...

Research directions

e Make the optimization of reco chain robust against domain shift
e Automate the tuning of simulation

e Learn data representations directly from data (+ use features to train reco chain)


https://arxiv.org/pdf/1412.6572.pdf

ML for Detector Physics Modeling

“Fully automation” of reconstruction optimization

The Catch

Supervised optimization with imperfect

simulation may cause a domain shift. S IO e
Manual tuning of simulation is a slow process. |StEE—- B A .

Research directions

[0 Automate the tuning of simulation ] ... briefly discuss this in the rest



https://arxiv.org/pdf/1412.6572.pdf

ML for Detector Physics Modeling

“Fully automation” of reconstruction optimization

The Catch

Supervised optimization with imperfect

simulation may cause a domain shift. | T
Manual tuning of simulation is a slow process. |GG B R .

Research directions
[o Make the optimization of reco chain robust against domain shift ]

[ e “Learn directly from data” through self-supervised, data representation learning ]

If curious, come find me during the coffee break!


https://arxiv.org/pdf/1412.6572.pdf

ML for Detector Physics Modeling

Gradient-based optimization

Recent success in machine learning ... much are backed by deep learning

... for which, one key success is gradient-based optimization

Analysis & reconstruction
using neural networks

Optimization
Input
p F (x|6) target
parameters L (F(x]0),y)

0



ML for Detector Physics Modeling

Gradient-based optimization

Recent success in machine learning ... much are backed by deep learning

... for which, one key success is gradient-based optimization

/ Yann LeCun
O January 5, 2018

OK, Deep Learning has outlived its usefulness as a buzz-phrase.
Deep Learning est mort. Vive Differentiable Programming! ° d

gradient
Input = Output Optimization
Y || physics model » F (x|0) - target

parameters

0

L (F(x|6),y)

\Exact gradiey



ML for Detector Physics Modeling

Gradient-based optimization

Recent success in machine learning ... much are backed by deep learning

... for which, one key success is gradient-based optimization

/ Yann LeCun
O January 5, 2018

/
OK, Deep Learning has outlived its usefulness as a buzz-phrase.
Deep Learning est mort. Vive Differentiable Progran pine "] ° t d

gradient

J

Input Optimization

N | |physics model - 21%;?');;[ - target
L (F(x]0),y)

parameters

0
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ML for Detector Physics Modeling

Example: differentiable LArTPC physics simulator

Drift of Ionization Differentiable

Electrons for Imaging Simulator
using explicit gradient
calculation using
AD-enabled tools 1

(JAX/PytOTCh) : ' ' " eField [kV / cm]

Work credit due (from left): : |Tr:iatii2iln\?a:)uaet:

SLAC-ML: Youssef N., Sean G., Daniel R. * Target Values
SLAC-neutrino: Yifan C.
LBNL-neutrino: Roberto S. /
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.. Wrapping up ..




Data Reconstruction in Experimental Particle Physics
Wrapping-Up

=1 AL
0 [ B o \

Take-awavs

e Machine learning-based object data reconstruction applied in HEP
o Choice of algorithm design based on input data and domain knowledge
o End-to-end optimization of multi-task cascade model for multi-modal input
o Mostly optimized via supervised learning using simulated samples
e Challenges from data-simulation discrepancies (domain shift)
o Make the optimization process robust against domain shift
o Automate simulation model/parameter optimization process
o Learn directly from data (e.g. self-supervision with Foundation Models)

Topics not covered (not exclusive list)
e Uncertainty quantification for ML methods (example paper)
e Physics-informed Neural Networks ... include physics constraints in optimization 27



https://crfm.stanford.edu/assets/report.pdf

Data Reconstruction in Experimental Particle Physics
Cross-domain HEP Al ecosystem

1AL

- Jhl—\\o\
ML is a “solution pattern” v.s. a domain-specific “hard-coded” solution.

It’s naturally reusable across domains including software tools

supported by a large community of researchers.

HEP Ecosystem for Al research

e Accessible education and training at all levels

e Reusable software tools to unlock modern compute
accelerators and networking (distributed ML)

e Public datasets with documentation and performance
metrics for transparent, reproducible science

e Artificial Intelligence and Technology Office (AITO)
o Federated, equitable, responsible, trustworthy Al
o Al is an accelerator. It is coming. Don’t avoid.

Participate to make sure the use is good.

Education and
training

Open source
and public
data

Distributed

28



https://www.energy.gov/sites/default/files/2021-09/AITO%20Program%20Plan%2009-16-2021.pdf

Machine Learning for Experimental Neutrino Physics
References

... Some review references ...

1 AL
e AN

29



Data Reconstruction in Experimental Particle Physics
Wrapping-Up c1 an

Some references

HEPML-Livi ng Review maintained collection of ML papers in HEP

A Living Review of Machine Learning for Particle Physics

Modern machine learning techniques, including deep learning, is rapidly being applied, adapted, and developed for high energy physics.
The goal of this document is to provide a nearly comprehensive list of citations for those developing and applying these approaches to
experimental, phenomenological, or theoretical analyses. As a living document, it will be updated as often as possible to incorporate the
latest developments. A list of proper (unchanging) reviews can be found within. Papers are grouped into a small set of topics to be as

useful as possible. Suggestions are most welcome.

download review

The purpose of this note is to collect references for modern machine learning as applied to particle physics. A minimal number of
categories is chosen in order to be as useful as possible. Note that papers may be referenced in more than one category. The fact that a
paper is listed in this document does not endorse or validate its content - that is for the community (and for peer-review) to decide.
Furthermore, the classification here is a best attempt and may have flaws - please let us know if (a) we have missed a paper you think
should be included, (b) a paper has been misclassified, or (c) a citation for a paper is not correct or if the journal information is now
available. In order to be as useful as possible, this document will continue to evolve so please check back before you write your next paper.
If you find this review helpful, please consider citing it using \cite{hepmllivingreview} in HEPML.bib.

30


https://iml-wg.github.io/HEPML-LivingReview/

Data Reconstruction in Experimental Particle Physics
Wrapping-Up

“Machine Laerning” review for particle physics

now available in Particle Data Group review (new in 2021)

NEWS: Updated 2021 review arficles available

PDG. SHORTCUTS~  CITATION  CONTACT

particle data group

The Review of Particle Physics (2021)

PA. Zyla et al. [Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update.
pdg! /- - Interactive Listings Order PDG Products
Summary Tables Topical Index
Reviews, Tables, Plots Downloads
Particle Listings Prev. Editions (& Errata) 1957-2020

Errata PDG Outreach

_ Q Non-PDG Resources

Mathematical Tools

Probability (rev.)

Statistics (rev.)

Machine Learning (new)

Monte Carlo techniques (rev.)

Monte Carlo event generators (rev.)

Monte Carlo neutrino event generators (rev.)

Monte Carlo particle numbering scheme (rev.)
Clebsch-Gordan coeff., sph. harmonics, and d functions
SU(3) isoscalar factors and representation matrices

SU(n) multiplets and Young diagrams



https://pdg.lbl.gov/

Data Reconstruction in Experimental Particle Physics
Wrapping-Up

ARTIFICIAL
INTELLIGENCE

FOR

HIGH ENERGY
REbesllC 5

... or a book for more comprehensive
review of Al for HEP!

Contributed by ~40 ML experts in HEP

Each chapter is a review of a particular
AI/ML technique or application.

Chapters available on arXiv for free.

Paolo Calafiura - David»Hdusseau - Kazuhiro Terao

“F World Scientific 32



https://www.worldscientific.com/worldscibooks/10.1142/12200

Machine Learning for Experimental Neutrino Physics
Back-up

Back-up slides
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33



Data Reconstruction in Experimental Particle Physics
Tracking @ Colliders

1 A

e AN

Charged particles sampled over ~10 layers.
Find a track = figure out combination of points.
Tracking @ HL-LHC = E5 per second!
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f Irﬁage courtesy of Alina L. (Exa.Trk. collab.) @ ACAT2021



Data Reconstruction in Experimental Particle Physics
Tracking @ Colliders
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https://link.springer.com/article/10.1140/epjc/s10052-021-09675-8

Representation Learning by
Foundation Models

Research on General AI and HEP datasets




Scalable, Extensible, General Al for HEP
Cons on Composite Machine Learning Models

=1 AL
0 | B o \

Challenges in extending ML for all reconstruction tasks + combining them

e Factorization is useful (e.g. application of domain knowledge, interpretable
intermediate outputs)

Input [ Pixel Features } [Pixel Clustering} [ Particle Flow ]

37



Scalable, Extensible, General Al for HEP
Cons on Composite Machine Learning Models

ol AL

N [ o \

Challenges in extending ML for all reconstruction tasks + combining them

e Factorization is useful (e.g. application of domain knowledge, interpretable
intermediate outputs) but may be a bottleneck for learning capability.

Where is the vertex?
Human brains are capable to
inspect multiple scenario
simultaneously / recursively.

(i.e. “look twice”) /[ :
MicroBooNE

38
30 cm Data




Scalable, Extensible, General Al for HEP
Cons on Composite Machine Learning Models

1 AL
e AN

Challenges in extending ML for all reconstruction tasks + combining them

e Factorization is useful (e.g. application of domain knowledge, interpretable
intermediate outputs) but may be a bottleneck for learning capability.

e Multiple task-specific models ~ duplicated modeling = energy inefficiency

Concept of a particle instance and trajectory is learned multiple times 39



Scalable, Extensible, General Al for HEP

General Al: how do we “train” a human?

1 A

N [ o \

Random
initialization

Pre-training

Learn

common
knowledge

Fine-tuning

Physicist

wyer

arpenter

40




Scalable, Extensible, General Al for HEP
General Al: self-supervised representation learning
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Self-Supervised Learning

e “Mask” portions of input data,
task the model to predict what is
under the mask.

Pre-training

Learn

common
knowledge

Random
initialization

e No labels needed
e Task-agnostic: engineers general
features (“representation”)




Scalable, Extensible, General Al for HEP
Foundation Model: Task-agnostic, Representation Learnipg .

DN
Energy Frontier Data -
= HEP FM Ecosystem i bf;,/
\ . Jet Tagging

/*%%

Particle-Flow ,_T;; :
Reconstruction e -
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Mitigation
HEP v Energy
Foundation Regression
Model
v Event
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Image credit: Javier Duarte (CMS/UCSD)
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HEP Al Ecosystem
Foundation Model: Task-agnostic, Representation Learnipg ..

o b M\

4 )
ML is a “solution pattern” v.s. a domain-specific “hard-coded” solution.

It’s naturally reusable across domains including software tools

supported by a large community of researchers.
o )

e.g.) physics inference on data from imaging detectors %=5_, g £

Intensity Energy Cosmic
Frontier Frontier Frontier e.g.) Cryo-EM

43




ML for Detector Physics Modeling

Physics model tuning

Example Application:
Modeling Optical Visibility
Map



ML for Detector Physics Modeling
Differentiable detector simulator

Photo-multiplier tubes (PMTs) detect scintillation photons

Optical Photon
Transport




ML for Detector Physics Modeling
Differentiable detector simulator

Photo-multiplier tubes (PMTs) detect scintillation photons

produced isotropically from an Argon atom
1 meter muon produces > 4M photons

\ A\ - -
.\‘ &\"l —

Optical Photon
Transport




ML for Detector Physics Modeling

Differentiable detector simulator

A marginalized “Visibility Map” for 3D voxelized Optical Photon
volume used to estimate photon count at each PMT Transport
Issue: static, not scalable

Example: ICARUS detector, 2D slice of a 3D map



ML for Detector Physics Modeling

Differentiable detector simulator

Static map (top) v.s. SIREN

R, x Optical Photon

L. @ Transport
Y using
B ™0™ 0 0 0 "0 e ) Differentiable
Surrogate
(SIREN)

Neural scene

-150

representation
(S (alternative: NeRF
€5 65 e5 e5 e & ) . .
MPe en en eo oo oo eo. | 1nc. differentiable

-] quﬂbooﬂ (-1-] co 0.0005 .
A s = = = = = rendering)




ML for Detector Physics Modeling

Differentiable detector simulator

Static map (top) v.s. SIREN

R x Optical Photon
3 SUelelelelelelene |R Transport
=——=——==—= using
Bl el le el [§ Differentiable
Surrogate
(SIREN)

e Avoid an explicit likelihood calculation which is
intractable for optimization (likelihood-free inference)
= e Smooth interpolation of optical visibility
e Data-driven optimization of visibility map
e Position-dependent discrepancy (error) propagation






Machine Learning in Particle Physics

Experiment Pipeline

o Edge-ML
e Trigger / online analysis

. Real data
e Object reconstruction

e Physics-informed ML

- Physics

e Design optimization

Physics e Facility/DAQ control

Reconstruction

(model/nature)

Extraction

. Synthetic
data
e Fast simulation

e Unfolding/Deconvolution

e Anomaly detection
e Parameter inference

Calibration ’



Data Reconstruction in Experimental Particle Physics
ML Particle Flow @ Collider (Reco for Multi-modal Data)_,

Event as input set Event as graph

® e : ml

B CIPSN  Graph R B Message L o |

] = building ® passing g
. FX[w)=A CX,A|lw)=H

Target set ¥ = {y;} Output set Y = {y;}

Elementwise loss L(y;, y;)
classification & regression
—>

l

Elementwise

decoding

D(x;, hi|w) =

x; = [elem. type, pr, Egcars Encavs 11> @ Mlouter Pouters 9> -+ -

Y= [PID, p1, E. 5, ¢, q], PID € {none, charged hadron, neutral hadron, y, e

hi e R Mhidden
Trainable neural networks: %, &,

® - track, ¥ - calorimeter cluster, @ - encoded element

- target (predicted) particle,

- no target (predicted) particle

Transformed inputs

E
M

$ G

Diagram/figures from Joseph P. (NICPB/CMS) @ ACAT2021
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https://indico.cern.ch/event/855454/contributions/4597457/attachments/2356505/4021524/cms_mlpf_acat2021_presentation.pdf

ML for Analyzing Big Image Data in Neutrino Experiments

Foundation Models

Transformer to GPT



General Pre-trained Transformer (GPT)

Idea: Pre-train on big data, then fine-tune w/ small data on a specialized task

Pre-training Fine-tuning Physicist

wyer

Learn how

to speak
p Become

arpenter

Random
initialization




General Pre-trained Transformer 1 (GPT-1)

Idea: Pre-train on big data, then fine-tune w/ small data on a specialized task

/ﬁ ) (ﬁ ' 'R '
. n - = - =
> o > oS} sS}
[TEE= 2l 2| & B
I 5 S|@ =B — S8 = — e 4 ; 0
nput =TT 12 5 & Z 2 = Z T8 z [ Ouiput
: oo 8 S o 2 < e j
S5 » & 5 > 5 © 3 = 3
- e : o : 2 :
;/ —__/ ~— -/ -/ —__/
% 12 layers

Pre-training: “next word prediction” using the decoder of a transformer (above) + linear
layer + softmax. No need to generate labels = massive amount of dataset (all digitally available
literature) can be used to train. This task allows the model to learn language.

Fine-tuning: a specialized task with small amount of labeled data. Change the final linear layer +
softmax depending on the task, but re-use the same model before these layers.



Bidirectional Encoder Representations from Transformers (BERT)

Idea: use the whole sequence + no architecture change at fine-tuning

................................................................................. V4
A
Og/@ GO
K) z e = c (ébd ]}Q]] [GQ' b;
]y = E. S £ S| Or o S/af.
SPRIES | 0N, (TR, | I S
X 24 layers o

Pre-training: “masked language prediction” using the encoder of a transformer (above).
The model is tasked to fill the masked word in the input sequence. “Next sentence prediction” is a
classification task whether two sentences are in the right sequence or not. Both dataset can be
generated from digital literature easily.

Fine-tuning: a specialized task with small amount of labeled data. No change in model
architecture and successfully fine-tuned on multiple tasks



GPT-2 and GPT-3

Idea: can we skip even fine-tuning?
Same (almost) as GPT-1 in terms of an architecture, but make the model and dataset larger. Can
it learn all language tasks from unlabeled pre-training dataset?

e One-shot learning: give a single example as a fine-tuning.
o Possible if the model already learned the task during a pre-training, and a single
example is used to map the task onto the learned knowledge space.

e Zero-shot learning: test a model on tasks that is never trained for.
o Possible only if the model learned the task and solution space during pre-training.

What is the color of your .5<?



GPT-2 and GPT-3

Idea: can we skip even fine-tuning?

Same (almost) as GPT-1 in terms of an architecture, but make the model and dataset larger. Can
it learn all language tasks from unlabeled pre-training dataset?

e One-shot learning: give a single example as a fine-tuning.
o Possible if the model already learned the task during a pre-training, and a single
example is used to map the task onto the learned knowledge space.

e Zero-shot learning: test a model on tasks that is never trained for.
o Possible only if the model learned the task and solution space during pre-training.

What is the color of your .5<?
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GPT-2 and GPT-3

Idea: can we skip even fine-tuning?

Same (almost) as GPT-1 in terms of an architecture, but make the model and dataset larger. Can
it learn all language tasks from unlabeled pre-training dataset?

e One-shot learning: give a single example as a fine-tuning.
o Possible if the model already learned the task during a pre-training, and a single
example is used to map the task onto the learned knowledge space.

e Zero-shot learning: test a model on tasks that is never trained for.
o Possible only if the model learned the task and solution space during pre-training.

What is the color of your .5<?

5<= 4k = clothing
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... attention mechanism is expanding ...
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Applications/Relation to image analysis
DALIL-E, ViT, Perceiver, ...



https://openai.com/blog/dall-e/
https://arxiv.org/abs/2010.11929
https://openai.com/blog/dall-e/

ML for Analyzing Big Image Data in Neutrino Experiments

Reconstruction chain

End-to-End
ML Reco Chain for
Neutrino Detectors



ML for Analyzing Big Image Data in Neutrino Experiments
End-to-end data reconstruction using ML

Machine Learning for Neutrino Image Data Analysis

e Goal: particle-level type and energy reconstruction

e How: extract physically meaningful, hierarchical features
(evidences) by chaining multiple ML models designed for each task

Input [ Pixel Features } [ Pixel Clustering ] [ Particle Clustering ]

Three major stages of reconstruction



ML for Analyzing Big Image Data in Neutrino Experiments
Stage 1: pixel-level feature extraction s

o b AN
Distinguish 2 distinct topologies: showers v.s. (for the next stage = clustering)
Identify trajectory edge points (track start/end, shower start)

30 cm 30 cm

—4 Real Data Image | ; i / Network Output
/

w 08
un 0f

/

\/ F
Y/
/ /
. Y
. cosmic Y \M
P' ‘
cosmic _.- P
» ”

uBoo@ Vi - pBoo P

’_& BNB Data : Run 5419 Event 6573 March 14th, 2016 -y BNB Data : Run 5419 Event 6573 March 14th, 2016

Network Input =+ Network Output


https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.092001

ML for Analyzing Big Image Data in Neutrino Experiments
Stage 1: pixel-level feature extraction

PPN1
attention
mask

PPN2
attention
mask

See Phys. Rev. D 102, 012005 (2019) and Phys. Rev. D 104, 032004 (2020)

input

tconv-s2-fdec

softmax
— Residual conr

- -=» Concatenatio

score threshold

unpool

add labels @ train

o Multiplying by
® attention mask

Semantic segmentation
(U-Net + residual conn.)

Edge point detection
(Faster R-CNN)

Sparse tensor operation

(Minkowski Engine) o


https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1904.08755
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032004

ML for Analyzing Big Image Data in Neutrino Experiments
Stage 1: input & output

1 AL
e AN

Stage 1 Input Stage 1 Output
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See Phys. Rev. 3102, 012005 (2019) Work-gredit (from left) Ran I. (SLAC) ;}li:l‘:’:lrelectmn T~ 2
and Phys. Rey, D 164, 032004 (2020) 4,  @ndLauraD. (Stanford), Delta-rays



https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032004

ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-a: dense pixel clustering

Clustering in the embedding space

e Use CNN to learn a transformation function from the 3D voxels to the embedding
space where clustering can be performed in a simple manner

66
Image credit: arXiv 1708.02551



https://arxiv.org/pdf/1708.02551.pdf

ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-a: dense pixel clustering
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Work credit . > See arxiv:2007.03083 r 67

Dae Heun Koh (Stanford)


https://arxiv.org/abs/2007.03083

ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-a: dense pixel clustering
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https://arxiv.org/abs/2007.03083

ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-a: input & output

ol AR
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Stage 2-a Input Stage 2-a Output




ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-b: sparse fragment clustering

ol AR

0 [y o \

Identifying 1 shower ... which consists of many fragments

Fragments 500 /

“

N
/

70



ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-b: sparse fragment clustering

ol AR

Ty = O
Identifying 1 shower ... which consists of many fragments
e Interpret each fragment as a graph node + edges connect nodes in the same cluster

Fragments 500 /
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ﬂ
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Input Graph
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ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-b: sparse fragment clustering

ol AR

N [ o \

Identifying 1 shower ... which consists of many fragments

e Interpret each fragment as a graph node + edges connect nodes in the same cluster
e Cast the problem to a classification of node (e.g. particle type) and edge (clustering)

Fragments

‘n

-
N
~2
~

extraction
>
L

Input Graph
( o N\

~

Feature

NNConv
>

Node Update

(@)
OO
/R,
O
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©

©
O

Metal ayer
>

@
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Edge Update

Output graph

Groups
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ML for Analyzing Big Image Data in Neutrino Experiments

Stage 2-b: sparse fragment clustering

Graph-NN for Particle
Aggregation (GrapPA) o e
Input:

e Fragmented EM showers

400
z
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See Phys. Rev. D 104, 072004 &
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004?ft=1

ML for Analyzing Big Image Data in Neutrino Experiments

Stage 2-b: sparse fragment clustering o -
G M\
Graph-NN for Particle /
Aggregation (GrapPA)
450
Input:
e Fragmented EM showers “ —
Node features: o /
e Centroid, Covariance matrix, PCA - ‘ / \
e Start point, direction (PPN) W~
«© " %0 .

See Phys. Rev. D 104, 072004 ® >5,



https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004?ft=1

ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-b: sparse fragment clustering

Graph-NN for Particle
Aggregation (GrapPA)
Input:

e Fragmented EM showers

Node features:
e Centroid, Covariance matrix, PCA
e Start point, direction (PPN)

Input graph:
e Connect every node with every other node
(complete graph)

See Phys. Rev. D 104, 072004
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004?ft=1

ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-b: sparse fragment clustering

ol AR

Graph-NN for Particle
Aggregation (GrapPA)
Input:

e Fragmented EM showers

Node features:
e Centroid, Covariance matrix, PCA
e Start point, direction (PPN)

Input graph:
e Connect every node with every other node
(complete graph)

Edge features:
e Displacement vector
e Closest points of approach

500
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400
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s 0

20, 0

N [ o \

6 50

See Phys. Rev. D 104, 072004



https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004?ft=1

ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-b: sparse fragment clustering

el A
&0 b AN
Target Prediction
500 / " /
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400 Py
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g > B 4 400
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- .
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«® work credit: o 65,
%o Francois D (SLAC), Qing L. (USTC), 0 77

See Phys. Rev. 0 104, 072004 & 5 Brad N (stat, U. Chicago), Alexander Z. (MIT), ¢ 5



https://arxiv.org/abs/2007.01335
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004?ft=1

ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2: input & output

ol AR

0 [y o \

Stage 2 Input Stage 2 Output




ML for Analyzing Big Image Data in Neutrino Experiments
Stage 3: clustering of particles into an event
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See Phys. Rev. D 104, 072004
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500
609

700

Identifying Each Interaction?
Grouping task = re-use GrapPA!

e Interaction = a group of particles that
shared the same origin (i.e. neutrino
interaction)

e Edge classification to identify an
interaction

e Node classification for particle type ID
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004?ft=1

ML for Analyzing Big Image Data in Neutrino Experiments
Stage 3: clustering of particles into an event
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ML for Analyzing Big Image Data in Neutrino Experiments
Stage 3: clustering of particles into an event
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ML for Analyzing Big Image Data in Neutrino Experiments
Stage 3: input & output

ol AR

0 [y o \

Stage 3 Input Stage 3 Output




ML for Analyzing Big Image Data in Neutrino Experiments

Physics model tuning

Example Application
1(0)§
Modeling Detector Physics



ML for Analyzing Big Image Data in Neutrino Experiments
Differentiable detector simulator

Photo-multiplier tubes (PMTs) detect scintillation photons

Optical Photon
Transport

('\;

Y, W =

A ““.’ h\
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ML for Analyzing Big Image Data in Neutrino Experiments
Differentiable detector simulator -

Photo-multiplier tubes (PMTs) detect scintillation photons

produced isotropically from an Argon atom
1 meter muon produces > 4M photons

Optical Photon
Transport




ML for Analyzing Big Image Data in Neutrino Experiments

Differentiable detector simulator

A marginalized “Visibility Map” for 3D voxelized Optical Photon
volume used to estimate photon count at each PMT Transport
Issue: static, not scalable

Example: ICARUS detector, 2D slice of a 3D map



ML for Analyzing Big Image Data in Neutrino Experiments

Differentiable detector simulator

- Static map (top) v.s. SIREN .
Nl g Optical Photon

sl |  Transport
————— R

I e a0 | Differentiable

Surrogate

(SIREN)

Neural scene

representation
Sb i E L = e (alternative: NeRF
':u::eo::u::u:bcog o 6o B inc. differentiable

s = = = a = rendering)




ML for Analyzing Big Image Data in Neutrino Experiments

Differentiable detector simulator

S IRl Optical Photon
.01 Optimized using visibility map (pixel-wise MSE loss)

Transport
using
Differentiable
Surrogate
(SIREN)

—~ Neural scene
- " representation
(= i

g . (alternative: NeRF
£ inc. differentiable

Work credit (from left): Olivia P. (UC Berkeley), Minjie L. (SLAC), renderlng)
Patrick T. (SLAC), , Gordon W. (Stanford CS), Chuan L. (Lambda Labs)

Fractional Bias [%]




ML for Analyzing Big Image Data in Neutrino Experiments
Differentiable detector simulator

Drift of Ionization
Electrons for Imaging




ML for Analyzing Big Image Data in Neutrino Experiments

Differentiable detector simulator

Drift of Ionization
Electrons for Imaging

g1 1. Particle ionize Argon
3
!
|
oo ‘

07050 ‘0 %0 % %0 T 0o B, By 0, 24 % g ®. %% %0 00
TR eyl



ML for Analyzing Big Image Data in Neutrino Experiments

Differentiable detectorsIIalc EG—C_ W = ..

o e I\

Drift of Ionization

Y
Electrons for Imagin 3 S
_— - sl : 1. Particle ionize Argon
L, e 2. Ionization electron drift in E-field
at a constant velocity, some charge
lost due to capture
=
O
) \ v ’ S 3. Imaging by charge-sensitive plane
v® v e 2 (detectors) at the anode
O
e =
M Tuning simulation = extract physics
- - model parameter values from data



ML for Analyzing Big Image Data in Neutrino Experiments

Differentiable detector simulator B A

T, N R N

Drift of Ionization Differentiable E
Electrons for Imaging Simulator B
_ | using explicit gradient
S W calculation using
g (g "3 AD-enabled tools
M- IR o (JAX/Pytorch) e

e Training path

Work credit due (from left): «  [HitEl Valges
SLAC-ML: Youssef N., Sean G., Daniel R. s i

SLAC-neutrino: Yifan C.
LBNL-neutrino: Roberto S. 2. /
<

100Q20@40Q60@80®@00®200

LS e
A Lifetime [us]

0.1
0.2
0.3
0.4
0.5

eField [kV / cm]

200 400 600 800 1000
Training iteration




Simulation v.s. Reconstruction/Calibration

“Reconstruction” is a process of inferring
a high(er) level physics quantities from raw data.

m)| Reconstruction ]II> :

Detector Output Reconstructed
(ADC) 93



Simulation v.s. Reconstruction/Calibration

“Calibration” infers (part of) nuisance parameters to infer target
physics analysis, often using (part of) reconstructed information

IZ> Reconstruction ]II> :
I L]
Detector . 4
physics model
parameters -

Detector Output Reconstructed
(ADC) Cahbratlon (Calibrated dE/dX) 94

Physics knowledge
(models)

Ap
11 kg - (dE/dx)]&

Q = Qo exp(—varifet/T)

o2(1) = 52(0) + (z’i)r

Vd

N

F1cARUS =




Simulation v.s. Reconstruction/Calibration

. | Simulation Input
Detector Simulation (true dE/dX)

Ap
1 +kg-(dE/dx)/&

Q = Qo exp(—varigst/T)

HICARUS =

“Simulation” takes in target
physics information and convolve
effects associated with the
measurements (i.e. nuisance)

2Dy
— |

v ;

o7 () = o7 (0) +

Detector Output
(ADC) 95



Simulation v.s. Reconstruction/Calibration

Simulation Input

The process is cyclic
(hence it is “reconstruction”)

Detector Output Reconstructed
(ADC) (dE/dX)

96



Simulation v.s. Reconstruction/Calibration

Simulation Input
Detector Simulation (true dE/dX)

Ap
1 +kg-(dE/dx)/&

Q = Qo exp(—variget/T)

HICARUS =

2D,
2
\’d

oF (1) = o} (0) +

Detector Output
(ADC)

The same (nuisance) models
applied at two separate steps.

Extraction and application of
model parameter values are
done manually.

Physics knowledge
(models)

Ap
11 kg - (dE/dx)]&

Q = Qo exp(—varifet/T)

F1cARUS =

o2(1) = 02(0) + (zﬂ)r

3

97



Simulation v.s. Reconstruction/Calibration

Simulation Input ,
Detector Simulation (true dE/dX) Proposal: automatize the
Ag process of detector physics

1+ kg (dE/dx)]& modeling and inference of the
@ = Qo exp(~varitet/7) input (reconstruction) through
an innovative simulator

HICARUS =

2Dy,
= t

v ;

o7 () = o7 (0) +

1t

Detector Output
(ADC)



SOIVlng the INVverse Note: G can be trained using only
the latter loss as well. Then it’s

... or a direct solver G unsupervised (purely data-driven)
G (XY, 6c)

Inverse Image Solver

—

Liny = |G(Y) = X|?

and / or

Lo = IF(G(Y) = YI

TEU  — < DO
Input domain of Output domain of

LArTPC simulator F (Y| X, QF) LArTPC simulator
(inaccessible) Differentiable LArTPC Simulator (e.g. real data)

99



ML for Analyzing Big Image Data in Neutrino Experiments
How can we find a neutrino?

ol AR

0 [y o \

100



ML for Analyzing Big Image Data in Neutrino Experiments
How can we find a neutrine cat?

ol AR

0 [y o \

How to write an algorithm to
identify a cat?

T =-.__..veryhardtask..

~

101




ML for Analyzing Big Image Data in Neutrino Experiments
How can we find a neutrine cat?

ol AR

ST =RO
Development Workflow for non-ML reconstruction
1. Write an algorithm based on physics principles

;\:::‘ \—J; (13 )
pEy ‘l l‘ — C a t
At

algorithm

collection of
A cat = . 102
Images courtesy of Fei Fei Li's TED talk (OI', a neUtrino) Certaln Sh apeS



ML for Analyzing Big Image Data in Neutrino Experiments
How can we find a neutrine cat?

ol A7y

P b I\

Development Workflow for non-ML reconstruction

2. Run on simulation and data samples
3. Observe failure cases, implement fixes/heuristics

Partial cat 'R e A collection of

' cat = . 103
(escaping the detector) Stl"etChlng cat (Nuclear Physics) oraneutrine)  Certain shapes



ML for Analyzing Big Image Data in Neutrino Experiments
How can we find a neutrine cat? o -

o ke AN

Development Workflow for non-ML reconstruction

Run on simulation and data samples

Observe failure cases, implement fixes/heuristics

Iterate over 2 & 3 till a satisfactory level is achieved

Chain multiple algorithms as one algorithm, repeat 2, 3, and 4.

2.
3.
4.
5.

algorithm

bartial cat X A cat = collection of .
(escaping the detector) Stretchlng cat (Nuclear Physics) (or, a neutrino) certain ShapeS

Images courtesy of Fei Fei Li’s TED talk




ML for Analyzing Big Image Data in Neutrino Experiments
How can we find a neutrine cat?

1 A

DM

“Machine learning (ML)”

e Design a solution pattern (instead of an explicit algorithm)

e Automation of optimization (steps 2-4)

e Multi-task optimization possible (step 5)

105




Machine Learning & Computer Vision in Neutrino Physics
Image Classifications: a lot of applications

ol AR

Especially great for: “a rare event in a quiet detector”

e Quiet = can assume “almost always neutrino”
o e.g.) no cosmic-ray background

e Rare = “only 1 neutrino”

106



Machine Learning & Computer Vision in Neutrino Physics
Image Classifications: a lot of applications

Especially great for: “a rare event in a quiet detector”

e Quiet = can assume “almost always neutrino”
o e.g.) no cosmic-ray background

e Rare = “only 1 neutrino”
o the same “image classification architecture” can be applied for...
m neutrino flavor (topology) classification
m energy regression (image to one FP32 value)
m vertex regression (image to three FP32 value)
m etc. ...

107



Machine Learning & Computer Vision in Neutrino Physics
Image Classifications: a lot of applications

ol AR

N [ o \

Especially great for: “a rare event in a quiet detector”

... but most of LArTPC detectors are not ...
e MicroBooNE, ICARUS, SBND, ProtoDUNE ... physics in next 5 years
o Busy: typically dozens of cosmic rays in each event
e DUNE-ND

o Not rare (busy): a dozen of neutrino interaction pile-up in each event h



Machine Learning & Computer Vision in Neutrino Physics
Why Data Reconstruction

ol A7y

N L

Image classification/regression: straight to “flavour & energy”

109




Machine Learning & Computer Vision in Neutrino Physics
Why Data Reconstruction

=1 AL
0 | B o \

... but also challenging: a huge single-step of information reduction

== va 1his is electron neutrino.
=4 EnergyisieV.

... would be nice to know why you thoughtso ... .,



Machine Learning for Experimental Neutrino Physics
Back-up

Reconstruction
Details

1 AL
e AN

111



ML-based Neutrino Data Reconstruction Chain
Stage 1-a: Pixel Feature Extraction + Scalablility

CNN applies
dense matrix
operations

In photographs,
all pixels are
meaningful

grey pixels = dolphins,
blue pixels = water, etc...



ML-based Neutrino Data Reconstruction Chain
Stage 1-a: Pixel Feature Extraction + Scalablility

CNN applies <1% of pixels

dense matrix

are non-zero in

operations LArTPC data

In photographs, . S Zero pixels are
all pixels are ; Tl meaningless!

meaningful

. . . Figures/Texts: courtesy of
grey pixels = dolphins, Empty pixels = no energy  aura Domine @ Stanford
blue pixels = water, etc...

Figure credit: Laura Domine @ Stanford 3



ML-based Neutrino Data Reconstruction Chain
Stage 1-a: Pixel Feature Extraction + Scalablility — .

o ke AN

“Applying CNN” is simple, but is it scalable for us?

<1% of pixels
are non-zero in
LArTPC data

Zero pixels are

meaningless!
Figures/Texts: courtesy of
Laura Domine @ Stanford

CNN applies
dense matrix
operations

In photographs,
all pixels are
meaningful

o Scalability for larger detectors
m Computation cost increases linearly with the volume
m But the number of non-zero pixels does not y

Figure credit: Laura Domine @ Stanford 4



ML-based Neutrino Data Reconstruction Chain

Stage 1-a: Pixel Feature Extraction + Scalablility

Sparse Submanifold Convolutions

Only acts on an active input pixels
+ can limit output activations for
only the same pixels.

e 1st implementation by FAIR

e 2nd implementation by Stanford VI,
o ... also supported in NVIDIA now

Original Activations

Filter Reach

Output Activations

.

-
-

r—

Original Activations

Filter Reach

Output Activations



https://github.com/facebookresearch/SparseConvNet
https://github.com/NVIDIA/MinkowskiEngine
https://github.com/NVIDIA/MinkowskiEngine

ML-based Neutrino Data Reconstruction Chain

Stage 1-a: Pixel Feature Extraction + Scalablility

CNN on sparse tensors Type | Proton Mu/Pi Shower Delta | Michel

. i N Acc. 0.99 0.98 0.99 0.97 0.96
(MinkowskiEngine)
e Public LArTPC simulation
o Particle tracking (Geant4) + diffusion, no
noise, true energy ¢ i
So:a,;:;:i;;:;;j;i::i:;:;;in:;; :;:_;:ti\al\:orks for Sparse,
Locally Dense Liquid Argon Time Projection Chamber Data i
Laura Dominé, Kazuhiro Terao i Mu / pl
o . Proton
EM Shower
Q= Delta Rays
PhysRevD.102.012005 presented @ ACAT 2019 N Michel
e Memory reduction ~ 1/360 \ .
e Compute time ~ 1/30 ..

e Handles large future detectors —


https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1103%2FPhysRevD.102.012005&v=f3bb7570
https://indico.cern.ch/event/708041/contributions/3269747/attachments/1812175/2960103/ACAT_2019_Laura_Domine.pdf

ML for Analyzing Big Image Data in Neutrino Experiments
Stage 1-a: Pixel Feature Extraction + Scalablility

1 A

DM

Sparse U-ResNet fits more data in GPU + good scalability

25 _ |
[ | = 210 images fits the —e— Sparse
, 1 whole MicroBooNE detector
20 | —e— Dense
|

~_ ";‘ |
@batch size 88 8 gy il b s e o i s b e
sparse uses hoe ¥ 15 z | 16Gb = max. memory .

s | (P100/V100 GPU @ HPc) Can handle easily the
93x less memory o) : whole ICARUS detector
than den§e ar.1d c 10 | I which is x6 larger than
gor?plitatlon IS %) 5 E MicroBooNE.

x faster f
“ l
> » : DUNE-FD is piece of
-\ T : cake (larger volume but
' 0 ; less non-zero pixels)
—-— 0 200 400 600 800 1000

Work credit: Laura Domine (Stanford) 11

and Ran ltay (SLAC) Batch size



Backup Slides

1 A

DM

2D=>3D
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Machine Learning & Computer Vision in Neutrino Physics
Bonus: isochronous ghost point removal

ol AL

N [ o \

ICARUS Detector
Reconstructed 3D points

100
200
300

work credit:
Laura Domine
Patrick Tsang 1;




Machine Learning & Computer Vision in Neutrino Physics
Bonus: isochronous ghost point removal
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Bonus: isochronous ghost point removal
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Machine Learning & Computer Vision in Neutrino Physics
Semantic Segmentation for Pixel-level Particle ID B

F R AN

Separate electron/positron energy depositions from other types at raw waveform level.
Helps the downstream clustering algorithms (data/sim comp. @ arxiv:1808.07269)
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BNB Data : Run 5419 Event 6573 March 14th, 2016

Network Input Network Output =


https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.092001
https://arxiv.org/abs/1808.07269

Machine Learning & Computer Vision in Neutrino Physics
Semantic Segmentation for Pixel-level Particle ID

Architecture: U-Net + Residual Connections

input
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Image credit: Laura Domine @ Stanford
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Fun Playing with Semantic Segmentation
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Fun Playing with Semantic Segmentation
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Localized features at the
pixel-level are useful to
inspect correlation of

data features &

algorithm responses
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Fun Playing with Semantic Segmentation
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