NuFACT 2022 WG2 Summary

Tatsuya Kikawa

Raúl González Jiménez

Adi Ashkenazi

WG2 - Neutrino Interaction

- Experimental efforts
 - 16 talks (12 on cross section measurement, 2 on electron scattering, 4 on flux prediction)
- Theory inputs
 - 5 talks
- Generator developments
 - 2 talks
- Joint session WG1-WG2:

 Constraining Xsec systematics / Xsec tuning
 - 4 talks
- Joint session WG1-WG2-WG6: Near detector constraints
 - 5 talks

Theory Input

Coulomb sum rule

Impressive fit using all (\sim 8000) available inclusive results: Providing R_L and R_T

- R_T is enhanced to account for 2p2h
- R_L is Suppressed due to Pauli blocking and requires extra suppression
- At low q the contribution of the nuclear excitations important.

soon to be published to benchmark event generators

Martini Model

The Martini Model showed impressive compatibility with neutrino inclusive and semi exclusive datasets from MiniBooNE and T2K

- MicroBoooNE inclusive data shows reasonable agreement for Ev < 0.7 GeV
- RPA quenching and smearing improves agreement.
- Missing modelling of 2 pion production most relevant to MicroBooNE

There are various formalism to handle FSI:

The Relativistic Optical Potential (removing nucleons)

The Intranuclear Cascade Model (modelling FSI)

They agree only at large energies

The input to FSI is non trivial, models often include FSI contribution

Event Generators

NEUT

Stefan Dolan

Introducing a new dependency of Eb to q₃ and improving agreement with inclusive results.

T2K ND disfavour the correction.

New knobs including: Pion interaction probability in FSI, resonance hadron decay properties

Good agreement with T2K and MicroBooNE inclusive

Also good comparison to T2K CC0 π due to RPA suppression in LFG

GENIE

Many new features including:

New FSI models

CEvNS

Correlated Fermi Gas model new reweighing knobs and more

New CC0π tune based on T2K, MiniBooNE and MINERvA data

Modification to QE + MEC lead to improved agreement

Test agains semi inclusive data

JUAN MANUEL FRANCO PATIÑO

Overview on SuSAv2
implementation in GENIE
compared to semi-inclusive data

Microscopic calculation based on RMF theory is better at low energy transfer, where factorization and SuSAv2 model fail

Experimental Results

MicroBooNE

Plethora of new CS measurements with largest sample on Argon cross checked with 2 reconstruction methods

Inclusive vµ from BNB

ve from NUMI

MicroBooNE - TKI

Soon to be published

MicroBooNE

Afroditi Papadopoulou, Elena Gramellini Chris Thorpe, Julia Book

2p selection favours MEC

+ $1\mu Np0\pi$, $1eNp0\pi$, semi inclusive NC with π^0

 \bullet Pi-0 detector will be replaced with new 4π acceptance detectors.

• SuperFGD : fully active plastic scintillator.

• High-Angle TPC: high resolution tracking of charged particles.

• Time-of-Flight : Provide time information.

Technical Design Report on <u>arXiv:1901.03750</u>

Andrew Cudd

Inclusive

CC coherent pion production

MINERVA Results

Minerba Betancourt

Inclusive Measurements

> 3M CCQE events

Coherent π^0 production important as ν_e background. Disagreement with models

$NOvA - \overline{v}_{\mu}CC\pi 0$

High statistics for this unprecedented analysis

EM shower selection using CNN

A data-driven template fit has been developed to estimate BG

Finalising unfolding and systematic uncertainty estimation

Various Constraints

Cross Section Constraints via e scattering

Wesley Ketchum

A DM detector for the benefit on neutrino

Promising capabilities for:

- Great forward angle coverage
- μ/p separation
- neutron detection
- Exact pre-vertex energy measurement

Interesting expected phase space

Stay tuned for news from test beam at CERN

Afroditi Papadopoulou

Cross Section Constraints via e scattering

Disagreement shown in reconstructed energy

Especially for high energies, heavy nuclei and events with high pT

New results showing differences also in

TKI distributions

More to come including neutrons

Cross Section Constraints - neutron CS

Ciro Riccio

Super-FGD

The 3d cubed scintillator detector

@ 0-800 MeV neuron beam LANL

Measured n-CH cross section - more to come!

ANNIE

The Accelerator Neutrino Neutron Interaction Experiment

26-ton Gd-loaded Water Cherenkov detector

100 m downstream at the Booster Neutrino Beam line at Fermilab

Measure neutron multiplicity from neutrino-nucleus interactions

Deployed LAPPDs Micro-channel Plate-based fast-timing photodetectors and WbLS - Water-based Liquid Scintillators

Seeing neutrinos!

ProtoDUNE-SP

Towards measuring pion argon cross section

Cross section extraction based on LArIAT method

$$\sigma = \frac{M_{\text{Ar}}}{\rho \delta x N_A} \ln \left(\frac{N_{\text{inc}}}{N_{\text{inc}} - N_{\text{int}}} \right)$$

- $M_{
 m Ar}$ is the mass of an argon atom
- N_A is the Avogadro constant
- ho is the density of liquid argon
- δx is the thickness of the slice
- $N_{
 m inc}$ is the number of incident beam pions in a slice
- N_{int} is the number of beam pions which have interaction in a slice

Also using stopping muons to constrain

Stay tuned for data!

Tuning as a way of life

Following an overview on recent tunes
Paley brought interesting food for
thought:

- We will likely need to "tune" our predictions for a very long time to come. Note, GEANT has been doing this for decades!
- The data-driven model-improvement cycle is extremely long, often on the time-scale of of a decade. DUNE would really benefit if we can get started _now_ on getting highquality nu+Ar xsec data at energies at and above the Resonance. (Note: the 2x2 demonstrator at FNAL is likely insufficient.)

- We should not forget that hadron+A cross section uncertainties are critical too!
 - Modeling of secondary interactions (typically done via Geant) is important for event selection efficiency calculations and hadron energy reconstruction.

Flux Constraints

Jon Paley

Table top hadron production to improve neutrino flux prediction @ FNAL test beam facility

There's already available data!

Currently collecting more to improve elastic and quasi elastic scattering measurements

phase 2 place EMPHATIC on a motion table downstream of spare NuMI target

Claudia Delogu

Monitoring neutrino beam, by measuring leptons from pions and kaons decay

Simulation showing promising results: adding tagger information lower <u>flux uncertainty from 6% to 1%</u>

Currently building a demonstrator - stay tuned for the data

More from NA61/SHINE in WG3

Using neutrino electron scattering inside MINERRvA to constrain the flux:

- 3.3% in neutrino mode
- 4.7% in antineutrino mode

More to come

vSTORM - neutrinos from stored muons

Collimated beam of neutrinos with known flux < 1 %

for % level cross section and BSM search

Potential to scan neutrino energy

Thinking of a joint facility with ENUBET at CERN

Considering NDGAr like detectors

NINJA

Neutrino Interaction research with Nuclear emulation at J-PARC Acc low-momentum charged hadrons from neutrino-nucleus interactions

From 2018 pilot run detecting protons from 200 MeV/c!

New measurements on the way

with H₂O, D₂O Fe and CH targets including multiplecities

Study tau neutrino from Ds decay

fundamental input to v_{τ} experiment list FASERv / SHIP

Aims to decrease v_{τ} production systematics

Nuclear Emulsions interlaid with tungsten/molybdenum (lead/tungsten)

Data run 2021-2022

Expecting ~8 M events

CEvNS proposal

coherent elastic neutrino nucleus scattering propto N2 at the China Spallation Source CSNS

10.2 m from target, strong flux (10¹⁰ per cm²h per flavour)

SND@LHC

LHC provides high energy neutrino in all three types around E3 GeV special consideration to the modelling started running - stay tuned!

Giving Back

Nuclear PDFs with neutrino DIS data!

Richard Ruiz

Plotted: ratio of BaseDimuChorus PDF to nCTEQ15WZSIHdeut νPB

Relatively nice agreement, tension found in similar analysis with Fe

Coherent elastic neutrino nucleus scattering

Matteo Cadeddu

Coherent experiment using Ar, CsI and now also Gr

Presenting an update to the neutron form factor and radius measurement $Rn^{CsI} = 5.4 + 0.4$ fm

Complimentary measurement of atomic parity violation in Cs

More input on the neutrino properties

$$|\mu_{\nu_e}| < 2.13 \times 10^{-10} \,\mu_{\rm B}$$
 Dresden – II (CE ν NS + ES),
 $|\mu_{\nu_{\mu}}| < 18 \times 10^{-10} \,\mu_{\rm B}$ CsI (CE ν NS + ES) + Ar (CE ν NS),

Summary

The NuFACT community highly appreciate the need in better understanding of vA interaction

Tremendous effort on

- Improving theory
- Implementation in event generators

- Producing reliable cross section measurement and use external data to provide constraints

Theory

Utilize

generators

Improve models

Experiments

Implement

Generators

models

Looking forward to

many more results to come and to meet again