Muon Physics (WG4) summary

Yuri Oksuzian, Yuki Fuji, Gavin Hasketh

Yuri Oksuzian

NuFact 2022

Muons at the neutrino conference

- Muons and neutrino beam follow a similar production mechanism
 - Dune is powered by PIP-II, but consumes only a tiny fraction of beam power
 - Other Intensity Frontier experiments like Mu2e-II will benefit from PIP-II
- We know Lepton Flavor Violation (LFV) occurs in neutrino sector
 - ► Are neutral and charged LFV related? Does CLFV arise from neutrino-mass generation mechanism?
 - Connection between neutrino mass models and muon experiments" by Julian Heeck in WG5
- CLFV $\mu \rightarrow e + \gamma$ occurs at the rate $\sim 10^{-54}$ due to neutrino oscillation
 - Neutrino masses could be generated via New Physics: low-scale seesaws, SUSY seesaw...
- Various New Physics models suggest enhancement to $\mu \rightarrow e + \gamma$ rate
 - An observation of CLFV would be an unambiguous sign of New Physics, and might shed light on neutrino physics

Where is the new physics?

Craig Group

- We know the Standard Model is not complete
- So, where is the rest of the physics we need to complete it?
- We don't know!
- We don't have a "no-lose" theorem to design our next discovery machine

Flavours: beyond SM

Lepton flavour and CP violation beyond SM PAUL SCHERRER INSTITUT Strongarguments in f(l)avour of New Physics!

Observations unaccounted for in SM: ν -oscillations, Dark matter,

baryon asymmetry of the Universe

(also some theoretical caveats...)

How to unveil the NP model at work?

Test SM symmetries with flavour observables: (c)LFV, lepton flavour universality violation, ...

 ν -oscillations 1st laboratory *evidence* of New Physics!

- New mechanism of mass generation? Majorana fields?
- New sources of CP violation?

Currently many tensions with SM related to charged leptons

 $(g-2)_{\mu,e}$, B-meson anomalies, ...

Muons are uniquely versatile and sensitive probes of NP!

- Abundantly available, many different observables
- Unprecedented future experimental prospects

(See talks by Angela Papa & Kevin Lynch, and maaaaany WG4 contributions)

Jonathan Kriewald LPC

CLEVES CHERREN DESERVABLES ACTOSS All sectors and energies Any CLEVES ignal necessarily implies the presence of New Physics!

▶ "Purely" leptonic cLFV observables: $\ell_{\beta} \rightarrow \ell_{\alpha} \gamma$, $\ell_{\beta} \rightarrow \ell_{\alpha} \ell_{\gamma} \ell_{\gamma'}$ Most stringent exp. bounds: $BR(\mu \rightarrow e\gamma) \leq 4.2 \times 10^{-13}$, $BR(\mu \rightarrow eee) \leq 10^{-12}$

Muonic atoms: many "nuclear-assisted" cLFV observables e.g. neutrinoless $\mu - e$ conversion ($\mu^- N \rightarrow e^- N$) : $CR(\mu - e, Au) \leq 7 \times 10^{-13}$

Semi-leptonic cLFV τ decays: $\tau \to P\ell', \tau \to V\ell'$; $BR(\tau \to \phi\mu) \lesssim 8.4 \times 10^{-8}$

(Semi-) leptonic cLFV meson decays: $M \to \ell_{\alpha}^{\pm} \ell_{\beta}^{\mp}$, $M \to M' \ell_{\alpha}^{\pm} \ell_{\beta}^{\mp}$; $BR(K_L \to \mu^{\pm} e^{\mp}) \leq 4.7 \times 10^{-12}$, $BR(B_{(s)} \to \ell_{\alpha}^{\pm} \ell_{\beta}^{\mp}) \leq \mathcal{O}(10^{-5})$ cLFV @ higher energies: $Z \to \ell_{\alpha}^{\pm} \ell_{\beta}^{\mp}$, $H \to \ell_{\alpha}^{\pm} \ell_{\beta}^{\mp}$, high- p_T di-lepton tails $pp \to \ell_{\alpha}^{\pm} \ell_{\beta}^{\mp}$, $BR(Z \to \ell_{\alpha}^{\pm} \ell_{\beta}^{\mp}) \leq \mathcal{O}(10^{-6})$

Future of CLFV Searches!!!

Craig Group

We are living in a Renaissance for Muon Physics

8/4/22

CLFV BSM physics

Mu2e: Concept

- Mu2e will search for a neutrino-less $\mu^{-}Al \rightarrow e^{-}Al$ conversion
- Improve the current limit on the conversion rate ($R_{\mu e}$) by **four orders** of magnitude:

$$R_{\mu \to e} = \frac{\Gamma\left(\mu^{-} + N(Z, A) \to e^{-} + N(Z, A)\right)}{\Gamma\left(\mu^{-} + N(Z, A) \to \nu_{\mu} + N(Z - 1, A)\right)} < 6 \times 10^{-17} \text{ (90\% CL)}$$

- Mu2e will produce and stop 7×10^{18} muons on aluminum foils
 - ➤ Searching for ~105 MeV electrons originating from the stopping target
 - ▶ In SM, $\mu^- N \rightarrow e^- N$ is *practically* forbidden ($R_{\mu e} \sim 10^{-54}$)

Signal observation at Mu2e is unambiguous sign of New Physics

8/4/22

Craig Group

Mu2e: Status

Craig Group

- Large fraction of Mu2e components have been fabricated
- Recently delivered protons to diagnostic absorber
- Detector commissioning through late 2024
- Take Run 1 data in 2025(6) until LBNF shutdown
 - x1000 improvement over SINDRUM-II
- Resume data collection in 2029

Yuri Oksuzian

NuFact 2022

MEG-II: Concept

- MEG-I at PSI set the limit of $\mu \to e\gamma$ conversion to $4.2 \times 10^{-13} @ 90 \% CL$
- MEG-II aims to increase the sensitivity by an order of magnitude
 - Similar design to MEG I, but all detectors have been upgraded
- Protons of 590 MeV produce un-bunched surface μ^+ at $\sim 7 \times 10^7 Hz$

MEG-II: Status

Dylan Palo

In 2021, MEG-II had the first physics run with a complete set of instrumented electronics

 Much work ongoing to improve detector resolution (CDCH wire alignment, magnetic dield, LXe calibration, algorithm optimization, etc.)

- MEG II 2021 dataset expected to approach the sensitivity limit set by MEG I
- MEG II 2021+2022 expected to surpass MEG I by a factor of ~4
- *Sensitivity hasn't yet been updated to reflect updated resolutions

Dataset	Sensitivity (10 ⁻¹³)
MEG I Sensitivity	5.3
MEG II Preliminary 2021 Sensitivity Estimate	5.3-6.1
MEG II Preliminary 2021+ 2022 Sensitivity Estimate	1.2–1.4

Deeme: Concept

Kazuhiro Yamamoto

- Deeme will search for a neutrino-less $\mu^- C \rightarrow e^- C$
- Improve the current limit on $R_{\mu e}$ by an order of magnitude
- Transport signal electrons (105 MeV/c)
- Analyze momentum with spectrometer dipole magnet & MWPC)
- Main backgrounds: Decay In Orbit, delayed protons
 - Beam induced backgrounds (RPC/RMC) are suppressed by delaying the search window by 300 ns
 - Cosmic background is negligible due to short livetime
 - Beam energy is 3 GeV => \bar{p} background is zero

NuFact 2022

Deeme: Status

The DeeMe commissioning run was performed in June 2022. Kazuhiro Yamamoto

• Every system worked well.

□ Ready to take physics data.

Prompt burst 105 MeV/c electron beam profile

Mu3e: Concept

- Muons stopped on target
 decay at rest
- Track e⁺/e⁻ trajectories in 1 T solenoidal field

- 4 layers of ultra-thin silicon pixel sensors
 - Timing with scintillating fibres

Recurl-stations with pixel

sensors

Mu3e: Goals and Status

8/4/22

Yuri Oksuzian

COMET: Concept

Sam Dekkers

• COMET@JPARC search for a neutrino-less $\mu^{-}Al \rightarrow e^{-}Al$

Yuri Oksuzian

COMET: Status

Sam Dekkers

Timeline

- All key facility and detectors on schedule for Phase- α (2023) and Phase-I (2024)
- Facility beamline to be ready for Phase- α (**2022**)
- Phase-I detectors:
 - CyDet CDC moving to J-PARC (2022) and CTH construction (2023)
 - Phase-I StrECAL (2023)
 - CRV (**2023**)
- Phase-II following on from Phase-I, R&D efforts progressing now

C-Line Construction PCS Construction PCS test T78 Phase-α R_{ext} Meas. **PCS Installation** PCS Return Yoke and Stage Phase-I **PCS Power Supply** Cryogenics **MTS** Test Air Sealing **Experiment Area Construction** Radiation Shield for Phase-alpha **Radiation Shield for Phase-I** Beam dump PCS Cu Shield Construction **PCS Cu Shield Installation** Jan-19 Jan-23 Jan-20 Jan-21 Jan-22 Jan-24

Facility timeline in lead up to Phase- α and Phase-I

AlCap

Andrew Edmonds

- The AlCap experiment is a joint venture between members of Mu2e and COMET to measure the yield and spectrum of individual charged particles after nuclear muon capture
- Ran at PSI and collected charged particle data on AI, Si and Ti

Results published in Phys.Rev.C 105 (2022) 3, 035501

Found that yields for AI were significantly lower than COMET/Mu2e had assumed

- COMET Phase-I will forgo a proton absorber
- Mu2e proton absorber will be thinner and shorter than originally planned

The g-2 experiment at FNAL

Brynn MacCoy

Fermilab Muon g-2 experiment

- 2006: BNL g-2 measured a_{μ} to 540 ppb
- 2021: FNAL g-2 measured a_{μ} to 460 ppb
- Combined 4.2 σ discrepancy between experiment and SM prediction
- Fermilab g-2 goal: 4× higher precision than BNL

- Experiment status
 - Finished Run 5 in July 2022
 - Run 2+ analysis in progress
 - Run 6 (final run) to start in fall

e+/

Raw

0.0

The g-2 experiment at FNAL

Brynn MacCoy

Standard model prediction for muon a_{μ}

Theory prediction: include all Standard Model interactions

$$a_{\mu}^{SM} = a_{\mu}^{QED} + a_{\mu}^{EW} + a_{\mu}^{HVP} + a_{\mu}^{HLbL}$$

Correction	Value (Error) $\times 10^{11}$	Error [ppb]			
QED	116 584 718.931(104)	0.9			
EW	153.6(1.0)	9			
HVP	6845(40)	343			
HLbL	92(18)	154			
Total a_{μ}^{SM}	116 591 810(43)	369			

Muon g-2 Theory Initiative recommended values T. Aoyama et. al., <u>Phys. Rept. 887 (2020) 1-166</u>

UNIVERSITY of WASHINGTON

MuonE

The SM value & HVP contribution

Progress to improve HVP precision:

- Current approaches:
 - Data-driven approach based on dispersive relations
 - Lattice QCD: calculations in progress
- New approaches: MUonE Experiment

red: data-driven results blue: lattice-QCD calculations blue band: lattice-QCD average (WP20) black: (& gray band) the SM prediction (WP20) filled: included in WP20 open: not included in WP20 [image: arXiv:2203.15810 (Snowmass 2021)] [WP20: arXiv:2006.04822]

Javad Komija<mark>ni</mark>

MuonE

Test run with 3 stations + calo is expected in 2023
Lorenzo Capriotti

Argonne

- EDMs provide a unique window into fundamental particles and their interactions
- Flavour anomalies could point to new physics which relax the constraints on the size of the muon EDM
- The Run-1 muon EDM search at Fermilabis nearing completion (Sam Grant)
- J-PARC g-2/EDM will start data taking in 2027 (Ce Zhang)-2
- Freeze g-2 component by applying a radial E-field (Kim Siang Khaw)
 - Up-down asymmetry measured using upper and lower detectors
 - Start phase-1 in the end of decade a_{μ}

8/4/22

Colliders

NA62 collaboration, JINST 12 (2017) P05025

The NA62 experiment

- ♦ In 2018, 1 year of operation $\approx 10^{18}$ protons on target; 4×10^{12} K⁺ decays.
- ✤ Single event sensitivities for K⁺ decays: approaching BR~10⁻¹².
- ★ Kinematic rejection factors: 1×10^{-3} for $K^+ \rightarrow \pi^+ \pi^0$, 3×10^{-4} for $K \rightarrow \mu^+ \nu$.
- ♦ Hermetic photon veto: $\pi^0 \rightarrow \gamma \gamma$ decay suppression (for $E_{\pi 0} > 40$ GeV) ~10⁻⁸.
- ✤ Particle ID (RICH+LKr+HAC+MUV): ~10⁻⁸ muon suppression.

E. Goudzovski / NuFact 2022, 4 August 2022

- Broad physics program in rare Kaon decays: HNL, hidden sector, LNV searches
 - No significant BSM excesses observed
- A long-term K^+ and K_L program ("HIKE") is taking shape at CERN
 - SPS fixed target operation foreseen until at least 2038

ATLAS

LFU test in $W\tau/\mu$ [Nat. Phys. 17 (2021) 813]

Source	Impact on $R(\tau/\mu)$	
Prompt d_0^{μ} templates	0.0038	ΔΤΙΛΟ
μ_{prompt} and $\mu_{\tau(\rightarrow \mu)}$ parton shower variations	0.0036	ATLAS ATLAS - this result
Muon isolation efficiency	0.0033	$\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ Statistical Uncertainty
Muon identification and reconstruction	0.0030	Systematic Uncertainty
μ_{had} normalisation	0.0028	
$t\bar{t}$ scale and matching variations	0.0027	
Top $p_{\rm T}$ spectum variation	0.0026	
μ_{had} parton shower variations	0.0021	
Monte Carlo statistics	0.0018	
Pile-up	0.0017	
$\mu_{\tau(\rightarrow\mu)}$ and $\mu_{had} d_0^{\mu}$ shape	0.0017	
Other detector systematic uncertainties	0.0016	0.98 1 1.02 1.04 1.06 1.08 1.1
Z+jet normalisation	0.0009	$B(\tau/\mu) - B(W \rightarrow \tau \nu)/B(W \rightarrow \mu \nu)$
Other sources	0.0004	$\Pi(t,\mu) = D(VV \rightarrow tV)/D(VV \rightarrow \mu V)$
$B(\tau \to \mu \nu_\tau \nu_\mu)$	0.0023	This result surpasses the precision of the
Total systematic uncertainty	0.0109	provide LED regult and regulated the tension
Data statistics	0.0072	they observed with the SM prediction of LEU
Total	0.013	mey observed with the Sivi prediction of LFU

Noam Tal Hod, WIS

15

Belle-II: e+e- B-factory operating mainly at 10.58 GeV: Y(4S)

One of the results: will deliver the strongest limit in tau CLFV decays

Current status observed limits and projections

- 52 benchmark LFV τ decays have been searched
- modes can be classified as neutrinoless 2-body/3-body decays
- critical to probe all possible
 LFV modes of τ
 - ⇒ any excess in single channel
 not provide sufficient information
 on underlying mechanism

- ➔ Belle II detector sensitivity close to NP scenarios limits
 - \rightarrow expected to improve the results of previous B-factories by a factor ~100 with statistics only
- there are additional LFV search channels with extra non-SM particles

Yuri Oksuzian

NuFact 2022

Belle-II

23

FCC

STCF

2040

EIC

Belle II

Snowmass 2021 White Paper: Charged lepton

flavor violation in the tau sector arXiv:2203.14919

ATLAS/CMS/LHCb

LHCb

B-factories show indications of deviations from SM in decays of bottom hadrons

LHCb

Measurement of R_{K^+}

- Decay used: $B^+ \to K^+ \ell^+ \ell^-$
- $^\circ$ Measured in $q^2 \in [1.1, 6.0 \ {\rm GeV^2}/c^4]$
- Using Run1 + Run 2, but still statistically limited
- Biggest systematic: fit model ~1%

Validation

- $r_{J/\psi} = 0.981 \pm 0.020$ (stat \oplus syst)
- $R_{\psi(2S)} = 0.997 \pm 0.011$ (stat \oplus syst)

Result

•
$$R_{K^+} = 0.846^{+0.042}_{-0.039}(\text{stat})^{+0.013}_{-0.012}$$
 (syst)

• Tension of **3.1** σ wrt the SM

[Nat. Phys. 18, 277-282 (2022)]

The experimental scenario

Large Hadron Collider (LHC)					High Luminosity LHC (HL-LHC)				FCC.ee	
Run 1	LS1	Run2	LS2	Run3	LS3	Run4	LS4	Run5		
7 TeV — 8 TeV — LHCb ATLAS/CMS		9 fb-1	Upgrade I	13.6 TeV	Upgrade Ib	14 TeV	Upgrade II	300 fb-1	GPD	
2011 2012 20	13 2014 20	015 2016 2017 2018	2019 2020 2021 2	2022 2023 2024 2025	2026 2027 202	8 2029 2030 2031 203	2 2033 2034	2035 2038 2039	2040 2051	
				We are First C	lata @13.6	TeV registere	d the 5th	of July 2022	2!	

LHCb Run 3 + 4: [LHCb Upgrade Physics Document]

- Major upgrades of all sub-detectors
- $\mathcal{L}_{\text{peak}} = 2 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$, # of pp interactions ~5
 - ° More measurements using full Run 1+2 dataset in preparation and using new channels.
 - Most analyses are **statistically dominated**: data from the LHCb upgrade will further improve these measurements, helping clarifying the picture.
 - Run 3 just started, hopefully exciting news soon!!

Future experiments with muon beams

LDMX/M³

- LDMX can conclusively probe many such models in the sub-GeV mass range through a missing momentum search
- Proposed M³ at Fermilab can test muonic forces motivated by muon g-2 and thermal relic models

Matt Solt

NuFact 2022

34

8/4/22

- If approved, Mu2e-II will improve $R_{\mu e}$ sensitivity by $\times 10$ beyond Mu2e limits, extending λ_{NP} reach by $\times 2$
 - Refurbish as much of Mu2e infrastructure as possible
 - Upgrade Mu2e components to handle higher beam intensity
 - Expected 5 years of physics run in the next decade
- Mu2e will utilize 100kW proton beam from Proton Improvement Plan-II (PIP-II) at Fermilab

PRISM concept

- A more ambitious option Fixed Field Alternating gradient (FFA) ring
 - Proposed by Y. Kuno, Y. Mori
- Provides pure muon beam to detector solenoid
 - An opportunity to explore high-Z stopping targets
- Cannot fill this ring directly from PIP-II
 - Needs a "compressor ring" to provide short, intense pulses at 100-1000 Hz.

8/4/22

- PIP-II Accumulator Ring (
 - Transform a long pulse into few (4) short very intense bunches for one extraction
 - Compact version (C=120 m) would be a better option for Mu2e-II

Beam Technical Challenges

- Things that are very hard that we know how to do:
 - stopped muon beam at 1MW

compressor ring

FFA

- Things that are very hard that we don't know how to do
 - 1MW target inside a superconducting solenoid
 - R&D here closely related to muon collider!

Fermilab's vision of muon experiemnts

S&T Precision Science

Vision: Fermilab is a world center for accelerator-based Charged-lepton flavor violation (CLFV) and Dark Matter experiments, driven by intense particle beams and PIP-II/Booster Replacement

Major decadal goals

- Muon g-2: Complete data production, analysis, theory to achieve 5σ
- Complete Mu2e project and start science
- Design and build Mu2e-II, other upgrades

	FY22	FY23	FY24	FY25	FY26	FY27	FY28	FY29	FY30	FY31	FY32
Muon g-2	Oper	Operations/analysis		9	R&D						
Mu2e	Cons	truction		9	Operatio	ns					
Mu2e-II	R&D							Constr	uction		

Questions

- Q: What are the outstanding topics in WG4:
 - g-2: requires more data, independent measurements of g-2 and HVP term, and lattice QCD validation
 - B-factories: requires more data and being patient
- Q: Overlap and complementarity between μ and v new physics searches?
 - Presentations by Jonathan Kriewald and Julian Heeck (WG5)
- Q: Reach of upcoming experiments at current and future facilities?
 - Addressed in plenaries and parallel sessions
- Q: What do we need from P5:
 - R&D for both near term (Mu2e-II like) and longer term (AMF) experiments
 - Need to identify and pursue synergies with other frontiers. WG3: beam production, transportation, cooling and efficient shielding. WG6: low-Z tracker, fast calorimeter, rad hard components

Summary

- Thanks for Yuki, Gavin, WG3-6 conveners, speakers, and the organizers
- We might observe our next big discovery in the very near future
 - Current experiments produce intriguing hints of New Physics
 - ► This decade, new experiments will deliver a significant leap in the sensitivity reach

