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Beam Production

Target Horn DetectorDecay Pipe AbsorberBeam

p Dark Sector State χ SM

SBN experiments sensitive to neutral,

long-lived particles produced in the beam

Several targets of opportunity to complement

the neutrino program
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The State of Simulation

Production Dark → Standard

Process Brem.DirectPromptLL Flux Decay e N El.N Inel. Det. Reco.

MadDump ✓ ✓ ✓ ✓ ✓

BdNMC ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

GENIE ✓ ✓ ✓

Geant4 ✓ ✓ ✓ ✓ ✓

ACHILLES ✓ ✓ ✓ ✓

FORESEE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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What’s Next

▶ Event Timing

▶ Fast Detector Simulations

▶ MeV-scale Signatures

▶ Reconstruction of Complex Topologies

▶ Triggering Non-Neutrino Signals
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Two Example Models

(1) Inelastic Dark Matter

(2) Higgs Portal
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Model #1: Inelastic Dark Matter

A V ∝ ϵ

▶ Broken U(1) → massive V with gauge portal

V

χ

χ

V

χ2

χ1

= i gD γµ

▶ Also splits charged fermions into separate

Majorana states
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Overview of Signals

▶ Both direct and decay production mechanisms

▶ Three possible signals in detector:

▶ Up-scattering χ1 e
− → χ2 e

− at short lifetimes

▶ Decay χ2 → e+ e− χ1 at long lifetimes

▶ Up- and down-scattering at very long lifetimes

γ v τ ≈ 103 m

(
∆χ

0.1

)−5

∆χ =
Mχ2

−Mχ1

Mχ1
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Simulation of Signal

Signal production using modified version of BdNMC

▶ Meson distributions from empirical

Sanford-Wang or Geant4 as available

▶ Proton bremsstrahlung from BdNMC including

interference with vector meson resonances

▶ DIS using MadDump

de Niverville et. al.: Phys.Rev.D 95 (2017) 3, 035006

Buonocuore et. al.: JHEP 05 (2019) 028
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Large Splitting Region

Some space accessible at large splitting via up-scatter
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Small Splitting Background

Backgrounds from neutrino beam and cosmic rays

ν

ν

n

n (missed)

π0

Z
γ (“e”)

γ (“e”)

χ2 → χ1 e
+ e− background

Missed neutron

and

Mismatched timing

and

Misreconstructed

photons

and

“Correct” angle/mass
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More on e+e− Background

Signal:

Single γ Bkg:

Two γ or e + γ Bkg:
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More on e+e− Background

Signal:

Single γ Bkg:

Two γ or e + γ Bkg:

Run photons through Geant4
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Background Reduction

Background γ give e+ + e− with small opening angle
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Arbitrarily small angle not

reconstructable anyway

▶ Place angular cut of 5◦
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Small Splitting Region

Significant improvements from ICARUS and SBND!

Includes some parts of thermal relic parameter space
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Possible “Off-Target” Run

MiniBooNE steered BNB off target and into absorber

Can reduce distance DM needs to travel and bkg
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Model #2: Higgs Portal Scalar

h SθS

▶ Dark scalar S mixes

with the Higgs boson

▶ Inherits interaction

pattern

▶ Only 2 relevant

parameters: mS and θS

High intensity for small mixing

Cosmology & Astrophysics for extremely small mixing
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How to Fill in the Gaps

Batell, Berger, Ismail: PRD 100 (2019) 11, 115039
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How to Fill in the Gaps

Batell, Berger, Ismail: PRD 100 (2019) 11, 115039
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This Search is Happening!
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MicroBooNE: PRL 127, 151803 (2021)
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Backgrounds

Focus on e+ + e− channel

Signal: e+e−

S
e−

e+

Background: e+e−

ν
ν
n

π0

γ

e−

e+

Small mS : Small opening e+e−

Looks like converted γ
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Can we harness machine learning techniques?

20



Simulation Strategies

▶ Output of GENIE or dark sector event generation:
List of four-vectors

▶ Fast, not detailed (even w/ smearing, . . . )

▶ Full detector simulation & reconstruction:
Highly detailed output in > 10, 000 wires

▶ Slow, but fully detailed

Is there something we can do that is fast, but fairly detailed?
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Simplified Simulation

1. Generate 4-vectors from GENIE or signal event generation

N.B. GENIE simulates until edge of nuclear remnant

2. Inject each 4-vector in Geant4 box of 40Ar

3. Parameterize detectable charge for each step deposit in Ar

Qdep ≈ Edep/Wion, Qdet ≈ Qdep
A

1 + k (dE/dx)/|E drift|

4. Map each x , y , z into wires and sample times

Birks, Proc. Phys. Soc. A 64 874 (1951)
Amerio et. al.: Nucl. Instrum. Meth. A 527 329 (2004)
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Sample Event
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Cut-Based vs. Machine Learning

Cut-Based Convolutional Neural Network

Use generator-level four-vectors Use fast simulation

Decay mesons using Pythia Decay mesons in Geant4

Convert photons using Geant4 Propagate all particles in Geant4

Apply parameterized thresholds* Let network decide thresholds

Reject events w/o correct topology Let network decide topology

Optimize cut on e+e− opening
angle

Train network to optimize
performance

Assume 20% systematic background normalization uncertainty

*Based on DUNE CDR 1512.06148
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Best CNN

▶ Focus on 100× 100 ROI

▶ Extract non-local info: series
of convolutions and pooling
for each of 3 images

▶ Combine & condense into 1
number to tell S from B
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Background Rejection vs. Signal Acceptance
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Comparison of Optimal Sensitivity

Analysis Limit on sin θ

Cut-based 8.1× 10−4

CNN 7× 10−4

▶ Modest improvement for sin θ

▶ Event rate ∝ sin4 θ

▶ Significant improvement in rate
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Backup
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Properties of the Scalar
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Decays to distinctive pairs of SM particles

Can travel hundreds of meters before decaying
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Dark Higgs Production

Mostly K production with penguin decay

s
c , t

W

S

qq

d
K π

Br(K → πS)

K± 2.0 · 10−3 2 pS
mK

θ2S

KL 7.0 · 10−3 2 pS
mK

θ2S

KS 2.2 · 10−6 2 pS
mK

θ2S

At small mixing: very rare

KS decay is CP violating
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New Potential Background:µ+µ−

Backgrounds from neutrino beam and cosmic rays

ν̄

µ−
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S → µ+µ− background

Missed neutron
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Mismatched timing
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Misreconstructed pion

and

“Correct” angle/mass
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Cuts & Background Reduction

e+e−: 10◦ e isolation required for reconstruction

µ+µ−: Reconstructed invariant mass; ES > 2.5 GeV

Both: Reconstructed S angle wrt beamline
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Basic Setup

p

Proton on Target Decay in LAr

K π
S

ℓ−

ℓ+

Scalar S mixing with Higgs with angle θS

Γ(K → π S) ∝ θ2S : If θS too large, S doesn’t reach detector

Γ(S → ℓ+ ℓ−) ∝ θ2S : If θS too small, not enough S produced
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More Careful Cut-based
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