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Advantages Disadvantages

- Atomic transition: O(1) eV

- Can measure the emitted photon

- Can be stimulated and coherently enhanced

- Tests ν physics in a different energy regime

- Cannot measure ν (small flux and E)

- 3γ background still a problem

- Exp. challenge to coherent enhancement

- Very new, still theo. investigation

Benefits are great and can provide interesting results!

mν ordering and scale, non-unitary, BSM interactions and maybe neutrino mixing and nature
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Neutrino LASER?

Excited State (|e >)

Ground State (|g >)

E1,M1 forbid

Virtual State (|v >)

γγ

γ

γ

“Coherent two-photon emission from hydrogen molecules ex-
cited by counter-propagating laser pulses,”

T. Hiraki et al. J. Phys. B 52, no.4, 045401 (2019)

E1×M1 transition
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∣∣2 ≈ ∣∣∫ d3xeix·p
∣∣2 ∼ N2
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Overall, there is a NγN
2
a macroscopic enhancement!

Current technology (probably) allows O(10) events/days of exposure
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Photon Carries ν information

How to extract ν physics?

Emitted photon contains information of the neutrino pair

Measure emitted photon spectral function I!

Because of Stimulation: |pemitted
γ | = ω (trigger LASER frequency)

The # of photons from de transition depends on ω.

Two important information: I ≡ I(ω) and ωmax
ij
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- Size gives mass hierarchy

Under reasonable assumptions:

3σ for mlightest and mass ordering

N. Song, R. B. Garcia et.al.
Phys. Rev. D 93, no.1, 013020 (2016)
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I(ω) =
∑
ij

∆ij(ω)

(Evg − ω)2
Θ(ω − ωmax

ij )
[
|aij |2I(D)

ij − δMRe[a2ij ]mimj

]
aij = UeiU

∗
ej +

1
2(UU †)ij

- Information on mixing angles

- Non-unitarity of U

- Even majorana phases

See: N. Song etal Phys. Rev. D 93, no.1,
013020 (2016) and G. Y. Huang et al. Int. J.
Mod. Phys. A 35, no.01, 2050004 (2020)
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]
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- Information on mixing angles

- Non-unitarity of U

- Even majorana phases

See: N. Song etal Phys. Rev. D 93, no.1,
013020 (2016) and G. Y. Huang et al. Int. J.
Mod. Phys. A 35, no.01, 2050004 (2020)

Caveat: Needs larger number of events (∼ 103 or larger).
But current technology O(10) ⇒ needs technological improvement
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Possible to probe new interactions too!

BSM Interactions

S.-F. Ge & Pedro, Pasquini Eur.Phys.J.C 82 (2022) 3, 208
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- SM M = MW ≈ 80 GeV. Since q2 ∼ 1 eV, −→ large suppression.
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q2−M2 ∼ 1

q2
for M2 ≪ q2

- Also, light mediators, the effect (and bounds) will be enhanced, specially for m2
ϕ

around the eV scale:
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See S.-F. Ge & Pedro Pasquini Eur.Phys.J.C 82 (2022) 3, 208
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Light is a light mediator

Another Possibility: The standard model has a massless mediator, the photon!

It is well known that neutrino charge is qν = 0 (or very small...)

But SM predicts non-zero ν magnetic moment (µν) and electric dipole (ϵν)

µν , ϵν ∼ 3× 10−19
(
mν
eV

)
µB

Still too small, but BSM physics can make µν , ϵν ∼ 10−11µB
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Compare with current constraints:

Stellar Cooling:
(γ∗ → νν)

(µ⊙
ν )

2 ≡ ∑
ij |(µν)ij |2 + |(ϵν)ij |2

Solar/Accelerator:
(ν + e → ν + e)

(µeff
αβ)

2 ≡ ∑
j |
∑

k U
∗
αk [(µν)jk − i(ϵν)jk]|2

Has blind spots
D. A. Sierra et al.

Phys.Rev.D 105 (2022) 3, 035027
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Separate magnetic from electric dipoles

RENP can distinguish µ from ϵ!

It can also tell which element (µν)ij (or (ϵν)ij) is non-zero!

Compare with current constraints:

Solar/Accelerator:
(ν + e → ν + e)

(µeff
αβ)

2 ≡ ∑
j |
∑

k U
∗
αk [(µν)jk − i(ϵν)jk]|2

Has blind spots
D. A. Sierra et al.

Phys.Rev.D 105 (2022) 3, 035027

Stellar Cooling:
(γ∗ → νν)

(µ⊙
ν )

2 ≡ ∑
ij |(µν)ij |2 + |(ϵν)ij |2

Large system. uncertanties
R. J. Stancliffe et al.

A&A 586, A119 (2016)
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Good Sensitivity!
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Summary

- Radiative emission of neutrino pair (RENP) is a novel and interesting idea.

- The RENP can obtain the neutrino mass scale and look for new physics.

- The low energy q2 of RENP makes it specially powerful probe of light mediator.

- µν and ϵν can be thoroughly explored
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Backup slides

Source: T. Hiraki et al. J. Phys. B 52, no.4, 045401 (2019)
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Backup slides

IZ′ =
∑
ij

∆ij(ω)

(Evg − ω)2
Θ(ω − ωmax

ij )
[(

|aLij |2 + |aRij |2 − 2δMRe[aLija
R
ij ]
)
I
(D)
ij +

(
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[
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2
]
− 2Re
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])
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]
.
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Coupling Lnew Non-Relativistic Transition Type

scalar yeS ēe ⟨f |i⟩ E1
pseudo-scalar iyeP ēγ5e

q
2me

· ⟨f |σ|i⟩ M1

vector geV ēγ
µe (⟨f |i⟩, q

2me
· ⟨f |σσ|i⟩) E1

axial-vector geAēγ
µγµe ( q

2me
· ⟨f |σ|i⟩, ⟨f |σ|i⟩) M1
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