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The Number 3 Stays with Us For Long: Neutrino Oscillations

Neutrino oscillations

uéf) = (UPMNS)aiV,'( i V
1]

Q@ = + +
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Mixing matrix

1 0 0 Ci3 0 S13eii5 Ci2 si2 0
Ums = 0 o3 s o 1 0 —812 Ci2 O
0 —so3 Co3 —S13 e 0 C13 0 0 1

source: http://www.hyper-k.org/en/index.html; https:/neutrinos.fnal.gov


http://www.hyper-k.org/en/index.html
https://neutrinos.fnal.gov

Setting

Experimental values of mixing parameters

01 € [31.61°,36.27°], o5 € [41.1°,51.3°],
f13 € [8.22°,8.98°], 4 € [144°,357°]

Interval matrix build up from unitary matrices Upyns (30 C.L.)

[0.243,0.490] [0.473,0.674] [0.651,0.772)
[0.295,0.525] [0.493,0.688] [0.618,0.744]

includes non-unitary matrices. § # 0: complex intervals, — Ujn;

[0.797,0.842] [0.518,0.585] [0.143,0.156]
‘U|int:

@ Can we get from |U|;;; an additional information on existence and
structure of hypothetical N, > 3 states?

@ We explore U, from matrix theory perspective.
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Non-unitary Matrices and a Notion of Contractions
Al <1

Operator norm (spectral norm)

||A|| ‘= sup HAXH = GHIaX(A)

lIx[[=1

Contractions as submatrices of the unitary matrix

U U
/fUUT_1:>H< 5;/3 U,/,';,>H_1:>”U3X3”§1'

PRD’2018.

Contractions allow us to determine the set of physically admissible mixing
matrices Q C Uiy
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(I) Uint and the Physical Region of Mixing (Convex Hull of Upyns)

i=1

(i m
Q :=conv(Upmis) = {Z aiUi | Ui e UQ3), aqy.ocyxm > O,Za, =1,
i=1

012, 013, 623 and § given by experimental values}

Contractionv” | | Contraction v~ Contraction X

Data 7

We proved that the Carathéodory’s number is m < 4, instead of 10(19) for
CP (GP) cases, e.g., for the 3+1 scenario, two Upyys matrices are enough to
span the corresponding subset of Q region.
Fig. from PRD2018, Vosc = Ujpt
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() Physical Region Can Be Divided into Non-Overlapping Subregions !

Not all Usx3 entries known well (precision) - see backup - hard to
avoid analysis based on Euler angles.

Nonetheless, we can use the knowledge of Q differently.

Q is divided into four disjoint subsets by singular values (PRD2018)

Q- 3+1 scenario: ¥ = {0y =1.0,02 =1.0,03 < 1.0},
Q5 : 3+2 scenario: ¥ = {oy =1.0,02 <1.0,03 < 1.0},
Q3 : 3+3 scenario: ¥ = {01 < 1.0,02 < 1.0,03 < 1.0},

Qq PMNS scenario: ¥ = {0y =1,00 =1,03 = 1}.

oi(A) = 1/ \i(AAT)

The connection between © = (o1, 02,03) and 3 + N scenarios, with N
additional vs, goes by the dilation procedure.
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Unitary dilation

Unitary dilation: an operation that extends a matrix which is a contraction to
a unitary matrix of an appropriate dimension

Ui dilation [|Upntl| <1 Unp — U UU =
Uni Unn

To find a unitary dilation of possible smallest dimension n: CS
decomposition

I, 0| 0
U= Uil <1 Un Y _( Wi 0 ) 6 cl_s ( Q o )
- Uni Unn 0 W 0 sl C 0 Q
C > 0 and S > 0 — diagonal matrices satisfying C? + S? = I,

Wi, Q1 € Mp_mxn—m and Wao, Q> € Mp«m — unitary matrices.
C, S, W;, Q; — fixed by the singular value decomposition of the U, .
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Unitary dilation

Unitary dilation: an operation that extends a matrix which is a contraction to
a unitary matrix of an appropriate dimension

U,,, Siation, [Untl| <1 Un — U UU —
Uni Unn

To find a unitary dilation of possible smallest dimension n: CS
decomposition

= (1=t ey (W0 ) Y I (qT o)
Uni Unn 0 W, 0 ST C 0 Q;

C > 0 and S > 0 — diagonal matrices satisfying C? + S? = I,

Wi, Q1 € Mp_mxn—m and Wao, Q> € Mp«m — unitary matrices.

C, S, W;, Q; — fixed by the singular value decomposition of the U, .

The dimension M of the defect space, is the minimal number of new

neutrino species necessary to ensure unitarity.
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Mixing space

Possible (Minimal) Extensions for Q Subsets

(G =

1. (8 x 3) € {Q1,92,9Q3} are unique
— extended unitary complete matrices are unique

w¥ n

2. Q, dilations e.g. to (5 x 5)
must be completed with Q4 dilations to (5 x 5), etc.
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Matrix Theory and Neutrinos: Summary Before Analytical/Numerical Results

Upnns — Uine

Mixing & interval matrix

( [[Uinel| €1 Un, )
Un Unn

o,Al=VA[AAT|

Singular values

Unitary dilation
lAll<1
Contractions

source (inside picture): https://www.symmetrymagazine.org
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Questions, based on the knowledge of Ui

Q1 How much space do we have for the additional neutrinos and how
quantify it within our approach?

Q2 Can we distinguish between Q; — Q3 (3+n models) using Ujn;?

Q3 Can we estimate active-sterile mixing using singular values and Uj;?

e 11/45



Analysis of data and results

«a-Parametrization and Prescribed Singular Values (backup slides)
«- parametrization of the deviation from unitarity in the neutrino sector:
Mows = (I — a)W = TW,

where W is a unitary matrix and T = | — « is a lower triangular matrix
[Zhi-Zhong Xing, 2008].

The method of analysis:
The construction of lower triangular matrices with prescribed singular values
and eigenvalues [C-K. Li and R. Mathias, 2004]

K K
[ < J]e
i1 i—1
vy 0 O T.1 O 0
Yy = {(71702,(73} — by oo 0 cT= T21 ng 0
31 fp I3 T3y Tz Ts3


https://www.sciencedirect.com/science/article/abs/pii/S0370269308001172?via%3Dihub
https://link.springer.com/article/10.1023%2FA%3A1021969818438

Analysis of data and results

Data

The limits for the T matrix (95% CL):

T.v O 0
Ta1 Te2 Ts3
Entry (I):m> EW (II):Am? >100eV?  (II11): Anf ~ 0.1 —1eV?
Ti1 =1 — aq 0.99870 + 1 0.976 -1 0.990 + 1
Too =1 — 0.99978 - 1 0.978 -1 0.986 + 1
Tss =1— 33 0.99720 +- 1 0.900 =1 0.900 =1
T21 = |ag1| 0.0 +-0.00068 0.0 -0.025 0.0 +-0.017
T31 = |as1| 0.0 +0.00270 0.0 +-0.069 0,0+ 0.045
Ts2 = |ags| 0.0 +-0.00120 0.0 +0.012 0.0 +-0.053

[M. Blennow et al., 2017]
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https://link.springer.com/article/10.1007%2FJHEP04%282017%29153

Analysis of data and results

Q1. Amount of Space for n Neutrinos: Singular Values

o3
m> EW 0.9968
3+1 Am? > 100 eV? 0.900
Am? ~0.1—1eV? 0.889

o2 g3
m> EW 0.9987 0.9986
3+2 Am? > 100 V2 0.976  0.975
Am? ~0.1—16V2 0.986  0.985

(o2 o2 o3
m> EW 0.9998 0.9996  0.9996
3+3 Am? > 100 eV? 0.979 0977 0.9773
AmP? ~01—-16V2 0991 0989  0.989

Error: 0.00003 (follows from Weyl’s inequality, see backup slides)



Analysis of data and results

(1): Fidelity of Results: Comparison with a Quark Sector

Wolfenstein parametrization (s;2 = )\, sy = AN%, 5136 = AN3(p + in))

1= A AN(p— i) .
Vekm = -2 A2 AN2 +O(X")

AX3(p — in) —A)\% 1
Experimental values (5 = p(1 — X\?/2) and 77 = n(1 — \?/2))

A = 0.22506 + 0.00050, A =0.811+0.026,5=0.124"%%'9 7 = 0.356 + 0.011,
o1 € [0.99997,1.00101],
o2 € [0.99965,1.00037],
o3 € [0.99890,1.00002].

Distribution of contractions
All matrices within Vg are contractions with 2 permil accuracy
6% of ||Vexwum|| = 1.002,
94% of ||[Vexwm|| = 1.001

0.961 < || Ujpe |l < 1.178



Geometry and Volume: Q1

Q1. Amount of Space for n Neutrinos: Geometry and Volume

The Q region is a subset of the unit ball of the spectral norm
B(n)={AeC™":|A| <1}

This fact allows us to give another characterization of the Q region as the
intersection of the B(3) with the interval matrix Uy i.e.

Q = B(3) N Ui (1)

Faces of the Q region:

J-E:{U<g 3‘>V;AeB(n—r)}-

Subsets Qq, ..., Q4 of the region Q are (relative) interiors of faces F
of the unit ball B(3) under parameters restriction for U and V to the

experimental data and admissible eigenvalues of A.
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Geometry and Volume: Q1

From a Human Point of View

B(n) ={AeC™ ||A| <1}

343

The extreme points of the B(n) are unitary matrices.
Edges correspond to 3 + 1.
Sides to 3 + 2.

Interiors to 3 + 3.
e
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Geometry and Volume: Q1

(I): Physical Volume Vanishes with Descending Errors in Uiy

CP-conserving \ CP-violating
Total volumes
SO(B) c O(8) C B(B) | Su(3)cu(3)c B(3)
Experimentally restricted volumes
Opis € 2 = 5(3) N Ot ‘ Upnis € Q = B(3) N Uint

E.g.:

vol(B(n)) = @n )n omyap vol(n) / HakHIOJ - ,2|2Hd0k

i<j

vol(@) = )33|vol(PMNS) / HakH\a, o2 Hdak

9min k=1 i<j
Measuarement fidelity:
=1_ /L
Is3)
Doy = 1-219x 10~* = 0.999781,
Dep = 1-1.8x107°=0.999982,
Dan = 1-1.077 x 107%,



Analysis of Data and Results: Q2

Q2: Can we distinguish between Q4 — Q3 (3+n models)?

Mowms = (1 —a)W = TW,
Data are global, for 3+n

Entry (I:m> EW (II): AmP 2100 eV?  (II1): Am? ~ 0.1 — 1 eV?
Ti1 =1 — a1 0.99870 ~ 1 0.976 + 1 0.990 =1
Too =1 — ap 0.99978 1 0.978 =1 0.986 - 1
Tsz =1 — aas3 0.99720 +- 1 0.900 =1 0.900 =1
To1 = |az1| 0.0 = 0.00068 0.0 - 0.025 0.0 - 0.017
Ts1 = |as1| 0.0 +-0.00270 0.0 = 0.069 0,0+ 0.045
Ts2 = |asz| 0.0 - 0.00120 0.0 -0.012 0.0 - 0.053
vy 0 O T.1 O 0
Y = {01702, (73} — toy  loo 0 cT= T21 ng 0
By tp I3 Ta1 T2 Ta3



The 3+1 scenario (o3 < 1): Results

(I):m> EW (ID:Am? > 100eV2  (IID): Am? ~ 0.1 —1eV?

(1,1) 0.99885+0.99999  0.97641 + 0.99996 0.99020 + 0.99999
Exp: 0.99870 =1 0.976 + 1 0.990 + 1
(2,2) 0.99980 --0.99999  0.99331 = 0.99999 0.98646 + 0.99999
Exp: 0.99978 =1 0.978 = 1 0.986 + 1
(3,3) 0.99721 +0.99996  0.90040 -+ 0.99985 0.90015 + 0.99958
Exp: 0.99720 =1 0.900 = 1 0.900 + 1
(2,1)  0.00001 = 0.00062 0.00031 +0.02214 0.00014 = 0.01615
Exp: 0.0 + 0.00068 0.0 +0.025 0.0 +0.017
(3,1) 0.00002 - 0.00266  0.00048 - 0.06892 0.00012 = 0.04500
Exp: 0.0 <+ 0.00270 0.0 + 0.069 0.0 - 0.045
(3,2) 0.00008 +-0.00113  0.00052 — 0.01196 0.00024 = 0.05281
Exp: 0.0 <+ 0.00120 0.0 +0.012 0.0 =+ 0.053

Q2: Can we distinguish between Q4 — Q3 (3+n models)?

@ 3+1 is different. So far no distinction between 3+2 and 3+3 scenarios is
possible (results overlap with T).

@ Note non-zero lower bounds (in blue), the biggest differences are in red.
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Analysis of Data and Results: Q3 3+1 scenario

Q3: Can We Estimate Active-Sterile Mixing Using Singular Values and Ujn;?
Q4 : 3+1 scenario: ¥ = {01 =1.0,00 =1.0,03 < 1.0}

1 0 0O
Mows Un N _ ([ Wy 0 0 1 0|0 Q}L 0
Uni Uwm | 0 W, 0 0 c|-s 0 Q; ’

We are interested in the estimation of the light-heavy mixing sector which is
given by

Un = W4 S12Q),

where W; € C**3 is unitary, Sy = (0,0, —s)" and Q, = €', 0 < (0, 2x].
Taking into account exact values of the W4 we can estimate the
light-heavy mixing by the analytical formula

’U,’4’=|W,‘3"h/1—0’§’, /ZG,,LL,T.



Analysis of Data and Results: Q3 3+1 scenario

Answer to Q3: Estimation of the "light-heavy" mixing: Results for 3+1

Estimation of the "light-heavy" mixing via CS decomposition
@ (ID:m> EW.
Ours : |Ue| € 10,0.021],  |U,4| € [0.00013,0.021], |U,4| € [0.0115,0.075].
Others : |Ues| < 0.041, |U,4| <0.030, |U,4| < 0.087 [J. de Blas, 2013]
@ (II): Am? > 100 eV2,

Ours : |Ues| €1[0,0.082], |U,4| € [0.00052,0.099], |U,4| € [0.0365,0.44].

@ (III):Am? ~0.1—16V2

Ours : |Ues| € 10,0.130], |U,4| € [0.00052,0.167], |U-4] € [0.0365,0.436].
Others : |Ueqs| € [0.114,0.167] , |U.4| €[0.0911,0.148] , |U-4] < 0.361.
[C. Giunti et al., 2017] [M. Dantler et al., 2018]

— In some cases we improved (blue), in some not (red).


https://www.epj-conferences.org/articles/epjconf/abs/2013/21/epjconf_lhcp2013_19008/epjconf_lhcp2013_19008.html
https://link.springer.com/article/10.1007%2FJHEP06%282017%29135
https://link.springer.com/article/10.1007%2FJHEP08%282018%29010

Mixings and Masses: Eigenvectors and Eigenvalues

How Light and Heavy Masses (Eigenvalues) Influence Active-Sterile Mixings

(Eigenvectors)?
Seesaw (SS) mass matrix

0 M
MSS: ( Mg Mi )?'MD|<<|MF? “
When 3 light vs? SS-I, I, Ill, ESS, ISS, LSS - we can SN

rearange to the same structure, o v Sy eV mAGazinG.of
W. Flieger, JG, Chin.Phys.C 45 (2021) 2, 023106 peiww SymMEtrymagazine.org

IMp| < A(Mg), A(Mss) ~ A(Mg) = |Mp|
A relation between light and heavy masses and their mixings

. / 1 1 .
[| sin e( VUghf? Vheavy)” < g”MSS — Mgl = g”MDH, 6= mln(MNi) - max(mVj)

P. Denton et al, Bul.Am.Math.Soc. 59 (2022) 1

n n—1
visl? TT u(A) = M) = TT (Mi(A) = M(My)) -
k=1;k#i k=1
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https://inspirehep.net/files/dee2314eb6a5bf4fc24d4eb8c569dea6
https://www.symmetrymagazine.org
https://inspirehep.net/literature/1748780

To be (3v) or not to be (3v)

We investigated Uj,; within matrix theory defining admissible region Q and
analyzing Q2 geometrical structure, and based on that we discussed:

Q1

Q2

Q3

How much space do we have for the additional neutrinos and how
quantify it within our approach?

= Alot.

We can judge on that using Ujx (singular values of Ui and volumes of
admissible CP, GP mixing matrices).

Can we distinguish between Q1 — Q3 (3+N models) using Uj:?

— Difficult.

3+1 is different. So far no distinction between 3+2 and 3+3 scenarios is possible
(results overlap with complete T-matrix data in both cases).

Can we estimate active-sterile mixing using singular values and Uj,;?
— Yes.

We estimated it in the 3+1 scenario using dilation and CS decomposition, getting
for some Am? mass scenarios better constraints than from other analysis (slide
22).
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To be (3v) or not to be (3v)

@ Better precision of future v-experiments can open a way to distinguish
between 3 + n mixings using the approach based on prescribed singular
values.

@ Matrix theory can help to find relations between eigenvectors,
eigenvalues of light and heavy mass spectrum
— mass matrix modeling.

Thank you for your attention, and the Organizers for the invitation.



Backup slides

Backup slides
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Backup slides

N.g: (Good) Things Come in 3s?

The Number of Neutrino Species,

D. Denegri, B. Sadoulet, M. Spiro, Rev.Mod.Phys. 62 (1990) 1

ELECTRON- |  PROTON-
COSMOLOGICAL IASTROPHYSICAL! posiTaON | ANTIPROTON
LMITS LMITS COLLIDER COLLIDER
LiMITS LTS
6 & |
ow e
o He' Li/H | SN 1987 A SINGLE
g L ecemc PrOTONS
2 E ° uat
10° é MONOJETS
Eowb X AN
. B 5 o
0 = D+ He g2 e AN
3 s a8 A58
10° He = o UAT + UA2
AZH @ EENS E0 olWalvi/a(Zell)|
" RS\ RSN COMBINED N
w0t Y 2 (AP CELLOWAC)
o - spJ RN
, 2 oS RN
" Li — 5 S
107 i 5 n &\\\ 088
7 77777,
0" T Y B 2 ”'“’-"“ / /AT

1989:

91 92 93
E (GeV)

SLC,N, =38+14

106 Z events

Initial measurements of Z-boson resonance parameters in et e annihilation, SLC Colaboration

Phys. Rev. Lett. 63, 724
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https://inspirehep.net/literature/280142
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.63.724
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.63.724

Backup slides

N.g: LEP and Now

ALEPH, OPAL, L3, DELPHI, MARKII (SLC): N, =3.12+0.19
CERN, 13.10.1989, Video (~12,000 Z decays)
[LEP, 2006] (~17 min Z decays)

N, = 2.9840 + 0.0082
Update: [P. Janot and S. Jadach, 2019](only 1o off from N=3)
N, = 2.9963 + 0.0074

Theorem: [C. Jarlskog, 1990]
In the Standard Model with n left-handed lepton doublets and N — n
right-handed neutrinos, the effective number of neutrinos, N, defined by

rNZ—v's)=N,ly,
where [ is the standard width for one masseless neutrino, satisfies
N, <n.

Cosmology: Ngs = 3.044. J. Froustey, C. Pitrou, M. Volpe, JCAP 12 (2020) 015,
J. Bennett, G. Buldgen, M. Drewes, Y. Wong, JCAP 03 (2020) 003, JCAP 03 (2021) A01


http://cds.cern.ch/record/423005?ln=en
https://www.sciencedirect.com/science/article/abs/pii/S0370157305005119?via%3Dihub
https://arxiv.org/abs/1912.02067
https://www.sciencedirect.com/science/article/abs/pii/037026939091873A
https://inspirehep.net/literature/2011984
https://inspirehep.net/literature/1764348

Backup slides

Determination of Upyns entries

Ue1 Ue2 Ue3
Upvns = | U Uiz U
U7‘1 U7'2 UT3

Appearence/Disappearence, SBL/LBL experiments sensitive to different
Upyins entries or their combinations.

@ E.g., Ues - Daya Bay (7, disappearence).

@ Least knowledge about the 7 entries.
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Determination of Upyns entries

Unitarity violation: tau row

Leptons: tau row is the weakest

1. Existing global analyses use OPERA and SNO
2. More data from atmospheric v appearance!

2109.14576

Also astrophysical vr appearance; weak but distinct!

. J. Gehrlein 2109.14575

detec

Works because 7 is in direct region

Cumulatnve »

Tau neutrino data set doubles every two years!

. et al. 2203.05591 (whitepaper)

(BNL) 2109. 14575 & 2109.14576 Neutrino 2022: June 1/2, 2022 32/34



Backup slides

|
SNO
KamLAND Solar CC/NC ratio
V. Disappearance

Daya Bay
V. Disapearance

MINOS/T2K
V. Appearance

INOS/T2K
vy, Disappearance

OPERA and SK
Solar NC fluxes V; Appearance

Mark Ros}.Lonergani-- IPPP, D+rham University
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Backup slides

Determination of Upyns entries

0.8

0.2
4

1
0.45

0.15
10

2
0.04

e Ll W ]

‘98 2000 2005 2010 2015 2020

(BNL) Neutrino 2022: June 1/2, 2022
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Backup slides

Singular values

Singular values o; of a given matrix A are positive square roots of the
eigenvalues ); of the matrix AAf

i(A) = 1/ Mi(AA)

@ generalization of eigenvalues

Properties:

@ always non-negative

@ stable under perturbations

Unitary matrices

UU' = | = diag(1,1,...,1) = all singular values equal to 1



Backup slides

Unitarity and Contraction: a Toy/Naive Example

For UPMNS holds

ZPOCBZ-L

However, for a nonunitary U this relation is not fulfilled. ©; = ©4 + ¢

Uspy ( cos©  sin @1>

—sin®y cosO»
In this case we get, A; o (mZ — m?) £
Pee + Peyy =1+ 4¢esin® Aoq sin ©1 cos O1 cos 204 + (’)(62)
Pue+ Py =1—4e sin? Ay sin ©4 cos ©1 cos 20, + 0(62)

Calculating the contraction, we get a unique answer about the non-physical

features of matrices:
Uyl > 1.

e 34145
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Unitary dilation: an example
As an illustration let us take two Upyns matrices

Us : 612 = 31.38°, 003 = 38.4°, 015 = 7.99°,
Us : 01 = 35.99°, 03 = 52.8°, 015 = 8.90°,

and let us construct a contraction as
1 1
V= 3 U + > Us,
The set of singular values
a1(V) =1, o2(V) = 0.991, o3(V) = 0.991

for which we get the following unitary dilation

0.822411 0.548133 0.146854 0.0169583 —0.0368511

—0.468394 0.520442 0.70103 —0.133845 0.0197681

U = 0.311417 —0.643236 0.686702 0.0250273 0.130689
—0.0524981 0.122242 —0.0336064 0.599485 0.788536
—0.0671638  0.00403263 0.119588 0.788536 —0.599485



Backup slides

Amount of space for n neutrinos: Analysis

@ Construction of matrices with prescribed singular values, e.g., in 3+1
scenario we take o1 = 1,00 = 1,03 < 1, together with the requirement
on the elements to stay within experimental limits.

@ Go with the "free" singular values as low as possible, e.g., in the 3+1
scenario we take o3 the smallest possible.



Backup slides

Distinction of the 3+1 scenario: Analysis

o1 =0 =1.

@ In each massive scenario 108 matrices are produced, starting from o3 as
large as possible and lowering it systematically to the smallest obtained
value (previous slide).

@ For each value of o3 the smallest and the largest values of produced
matrix elements are taken.

@ Repeating the procedure over possible o3 values, the allowed ranges of
the 3 x 3 matrix elements are determined.



Backup slides

Narrowing mixing spreads for individual sing. val.

@ Generation of matrices with a prescribed set of singular values
and with elements within experimental ranges.

@ From the set of these matrices take the smallest and the largest
value of each element.

E.g.: Am? > 100 eV2, ¥ = {1,1,0.900} :

|Ao.900| =
0.999623 + 0.999999 (1.5%) 0 0
0.000002 - 0.000753 (3%) 0.999623 - 0.999999 (2%) 0
0.000606 + 0.011919 (16%) 0.000606 = 0.011923 (94%) 0.900002 -+ 0.900678 (1%)

Values in the brackets represent the percentage of the current
experimental bounds.
For the other massive cases these values do not exceed 15%.
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Matrix norm

A matrix norm is a function || - | from the set of all complex (real matrices) into
R that satisfies the following properties

IAll >0 and [[A| =0<= A =0,
[eAll = |el|All, o € C,
A+ Bl < [[All+ B,
|AB]| < [IAllllB]l
Examples of matrix norms

@ spectral norm: [|Al| = max|x|,—1 [|AX|[2 = o1(A)

@ Frobenius norm: ||Al|r = /Tr(ATA) = \/221:1 a2 = \/27:1 o?

@ maximum absolute column sum norm:
[All1 = max|xj,=1 [|[AX]lc = max; >_; |a]

@ maximum absolute row sum norm:
[Alloo = maxjxj =1 |AX|[oc = max; 3 [aj]
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Weyl’s inequality for singular values

Let A and B be a m x n matrices and let ¢ = min{m, n}. Then

Uj(A + B) < i(A)+ Uj_,'_H(B) fori<j
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Error Estimation

Let us assume that the V matrix which realizes some BSM scenario includes
an error matrix £ which is of the form V + E. Using Weyl inequalities for
decreasingly ordered pairs of singular values of V and V + E, the following
relation takes place

loi(V + E) —oi(V)| < ||E|l

A precision for elements of the A inthe m > EW is 105. In our analysis we
keep the same precision for all massive cases. This does not contradict
experimental results since we still work within experimentally established
intervals. Thus, all entries of Error matrix can be taken as E; ~ 0.00001.
Therefore, uncertainty of the calculated singular values is bounded by

[|E|| = 0.00003.



Algorithm
The following steps lead to a contraction settled by Upuns and then to its unitary dilation of a

minimal dimension

1) Select a finite number of unitary matrices U;, i = 1,2, ...m, within experimentally allowed
range of parameters 63, 623 and 4.

2) Construct a contraction Uy as a convex combination of selected matrices U;

m

m
V= Za;U,-, ity ., am > 0, Za,- =1.
i=1 i=1
3) Find singular value decomposition of V, i.e.
V=wzal

where Wy, Qq are unitary, X is diagonal, and determine number 7 of singular values strictly less
than 1.

4) Use CS decomposition
Upmns  Up
U= =
( Un Unn )

<W1O) 1%\ (a o
o W s|c e

to find the unitary dilation U € M3, )« (3+x) Of contraction Uy.

oo =
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Results on slide 21 have been obtained by taking exact maximal values of
Wes, W,z and w3, which follow from the singular value decomposition.

|Uia| = |wiz| - [1/1 —ag\, i=e,u,r.

0.020

0.018 .

‘Ue4| 0.016
0.014

0.012

0.9970 0.9975 0.9980 0.9985 0.9990 0.9995
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FCC-ee, Tera-Z option

TeV
MeV
keV
eV
VS
\
meV 2
vl

Blondel et al 1411.5230

can generate Baryon Asymmetry of Universe
if my, 3 > 140 MeV

T T
gl Biciased by nen-cbearvabise
2. S ]
constrained: i e o
PRI o
mass: 1-50 keV & .| H }\ R
L g H
mixing : ol g ~
107t0 103 fuu| gs
decaytime:  {*"f & | S
ol =
N1 > Tuniverse . - o> s0

DM mass (xeV]

N, vymay have been seen:
arxiv:1402:2301 and arxiv:1402.4119
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meas SM
n, =
I-lepl‘ I_lept‘

ALEPH
30} DELPHI

20

+ average measurements, [/
error bars increased
by factor 10

Oaq [M]

10

0 L L L
86 88 9 92 94
E_, [GeV]

“em

N, = 2.9840 £ 0.0082 ALEPH, 2005
e

45/45



	Mixing space
	Analysis of data and results
	Geometry and Volume: Q1
	Analysis of Data and Results: Q2
	Results
	Analysis of Data and Results: Q3
	3+1 scenario

	Mixings and Masses: Eigenvectors and Eigenvalues
	Summary
	Outlook
	Backup slides

