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Mixing space

The Number 3 Stays with Us For Long: Neutrino Oscillations

ν(f )α = (UPMNS)αiν
(m)
i

Neutrino oscillations

Mixing matrix

UPMNS =

(
1 0 0
0 c23 s23
0 −s23 c23

)(
c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13

)(
c12 s12 0
−s12 c12 0

0 0 1

)
source: http://www.hyper-k.org/en/index.html; https://neutrinos.fnal.gov
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Mixing space

Setting

Experimental values of mixing parameters

θ12 ∈ [31.61◦,36.27◦], θ23 ∈ [41.1◦,51.3◦],

θ13 ∈ [8.22◦,8.98◦], δ ∈ [144◦,357◦]

Interval matrix build up from unitary matrices UPMNS (3σ C.L.)

|U|int =

 [0.797,0.842] [0.518,0.585] [0.143,0.156]
[0.243,0.490] [0.473,0.674] [0.651,0.772]
[0.295,0.525] [0.493,0.688] [0.618,0.744]


includes non-unitary matrices. δ ̸= 0: complex intervals, −→ Uint

Can we get from |U|int an additional information on existence and
structure of hypothetical Nν > 3 states?

We explore Uint from matrix theory perspective.
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Mixing space

Non-unitary Matrices and a Notion of Contractions

∥A∥ ≤ 1

Operator norm (spectral norm)

∥A∥ := sup
∥x∥=1

∥Ax∥ = σmax(A)

Contractions as submatrices of the unitary matrix

If UU† = 1 =⇒
∥∥∥∥( U3×3 Ulh

Uhl Uhh

)∥∥∥∥ = 1 =⇒ ∥U3×3∥ ≤ 1.

PRD’2018.

Contractions allow us to determine the set of physically admissible mixing
matrices Ω ⊂ Uint
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Mixing space

(I) Uint and the Physical Region of Mixing (Convex Hull of UPMNS)

Ω :=conv(UPMNS) = {
m∑

i=1

αiUi | Ui ∈ U(3), α1, ..., αm ≥ 0,
m∑

i=1

αi = 1,

θ12, θ13, θ23 and δ given by experimental values}

a

a

a

U1

U2

V ′

ContractionX
Data 7

Contraction X
Data X

Contraction 7
Data ?

‖V ‖ = 1

‖V ‖ ≤ 1 VoscΩ

We proved that the Carathéodory’s number is m ≤ 4, instead of 10(19) for
CP (��CP) cases, e.g., for the 3+1 scenario, two UPMNS matrices are enough to
span the corresponding subset of Ω region.
Fig. from PRD2018, Vosc ≡ Uint
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Mixing space

(II) Physical Region Can Be Divided into Non-Overlapping Subregions !

Not all U3×3 entries known well (precision) - see backup - hard to
avoid analysis based on Euler angles.
Nonetheless, we can use the knowledge of Ω differently.

Ω is divided into four disjoint subsets by singular values (PRD2018)

Ω1 : 3+1 scenario: Σ = {σ1 = 1.0, σ2 = 1.0, σ3 < 1.0},
Ω2 : 3+2 scenario: Σ = {σ1 = 1.0, σ2 < 1.0, σ3 < 1.0} ,

Ω3 : 3+3 scenario: Σ = {σ1 < 1.0, σ2 < 1.0, σ3 < 1.0},
Ω4 : PMNS scenario: Σ = {σ1 = 1, σ2 = 1, σ3 = 1}.

σi(A) =
√
λi(AA†)

The connection between Σ = (σ1, σ2, σ3) and 3 + N scenarios, with N
additional νs, goes by the dilation procedure.
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Mixing space

Unitary dilation

Unitary dilation: an operation that extends a matrix which is a contraction to
a unitary matrix of an appropriate dimension

Uint
dilation−−−−→

(
||Uint || ≤ 1 Ulh

Uhl Uhh

)
≡ U → UU† = I

To find a unitary dilation of possible smallest dimension n: CS
decomposition

U ≡
(

||Uint || ≤ 1 Ulh
Uhl Uhh

)
=

(
W1 0
0 W2

) Ir 0 0
0 C −S
0 S C

( Q†
1 0

0 Q†
2

)
C ≥ 0 and S ≥ 0 — diagonal matrices satisfying C2 + S2 = Im

W1,Q1 ∈ Mn−m×n−m and W2,Q2 ∈ Mm×m — unitary matrices.

C, S, W1, Q1 — fixed by the singular value decomposition of the Uint.

The dimension m of the defect space, is the minimal number of new
neutrino species necessary to ensure unitarity.
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Mixing space
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Mixing space

Possible (Minimal) Extensions for Ω Subsets

1. (3 × 3) ∈ {Ω1,Ω2,Ω3} are unique
−→ extended unitary complete matrices are unique

2. Ω2 dilations e.g. to (5 × 5)
must be completed with Ω1 dilations to (5 × 5), etc.
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Mixing space

Matrix Theory and Neutrinos: Summary Before Analytical/Numerical Results

Mixing & interval matrix

Singular values Unitary dilation

Contractions

𝜎 𝑖 ( 𝐴 )=√ λ𝑖 ( 𝐴 𝐴† )

‖𝐴‖≤1

(   )a11

a21

a12

a22

source (inside picture): https://www.symmetrymagazine.org
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Mixing space

Questions, based on the knowledge of Uint

Q1 How much space do we have for the additional neutrinos and how
quantify it within our approach?

Q2 Can we distinguish between Ω1 − Ω3 (3+n models) using Uint?

Q3 Can we estimate active-sterile mixing using singular values and Uint?
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Analysis of data and results

α-Parametrization and Prescribed Singular Values (backup slides)

α- parametrization of the deviation from unitarity in the neutrino sector:

�UPMNS = (I − α)W = TW ,

where W is a unitary matrix and T = I − α is a lower triangular matrix
[Zhi-Zhong Xing, 2008].

The method of analysis:
The construction of lower triangular matrices with prescribed singular values
and eigenvalues [C-K. Li and R. Mathias, 2004]

k∏
i=1

|λi | ≤
k∏

i=1

σi

Σ = {σ1, σ2, σ3} →

 t11 0 0
t21 t22 0
t31 t32 t33

 ⊂ T =

 T11 0 0
T21 T22 0
T31 T32 T33


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Analysis of data and results

Data

The limits for the T matrix (95% CL):

T =

 T11 0 0
T21 T22 0
T31 T32 T33


Entry (I): m > EW (II): ∆m2 ≳ 100 eV2 (III): ∆m2 ∼ 0.1 − 1 eV2

T11 = 1 − α11 0.99870 ÷ 1 0.976 ÷ 1 0.990 ÷ 1
T22 = 1 − α22 0.99978 ÷ 1 0.978 ÷ 1 0.986 ÷ 1
T33 = 1 − α33 0.99720 ÷ 1 0.900 ÷ 1 0.900 ÷ 1

T21 = |α21| 0.0 ÷ 0.00068 0.0 ÷ 0.025 0.0 ÷ 0.017
T31 = |α31| 0.0 ÷ 0.00270 0.0 ÷ 0.069 0, 0 ÷ 0.045
T32 = |α32| 0.0 ÷ 0.00120 0.0 ÷ 0.012 0.0 ÷ 0.053

[M. Blennow et al., 2017]
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Analysis of data and results

Q1. Amount of Space for n Neutrinos: Singular Values

σ3

m > EW 0.9968
3+1 ∆m2 ≳ 100 eV2 0.900

∆m2 ∼ 0.1 − 1 eV2 0.889

σ2 σ3

m > EW 0.9987 0.9986
3+2 ∆m2 ≳ 100 eV2 0.976 0.975

∆m2 ∼ 0.1 − 1 eV2 0.986 0.985

σ1 σ2 σ3

m > EW 0.9998 0.9996 0.9996
3+3 ∆m2 ≳ 100 eV2 0.979 0.977 0.9773

∆m2 ∼ 0.1 − 1 eV2 0.991 0.989 0.989

Error: 0.00003 (follows from Weyl’s inequality, see backup slides)
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Analysis of data and results

(I): Fidelity of Results: Comparison with a Quark Sector

Wolfenstein parametrization (s12 = λ, s23 = Aλ2, s13eiδ = Aλ3(ρ+ iη))

VCKM =

 1 − λ2

2 λ Aλ3(ρ− iη)

−λ 1 − λ2

2 Aλ2

Aλ3(ρ− iη) −Aλ2 1

+O(λ4)

Experimental values (ρ̄ = ρ(1 − λ2/2) and η̄ = η(1 − λ2/2))

λ = 0.22506 ± 0.00050, A = 0.811 ± 0.026, ρ̄ = 0.124+0.019
−0.018, η̄ = 0.356 ± 0.011,

σ1 ∈ [0.99997, 1.00101],

σ2 ∈ [0.99965, 1.00037],

σ3 ∈ [0.99890, 1.00002].

Distribution of contractions
All matrices within VCKM are contractions with 2 permil accuracy

6% of ∥VCKM∥ = 1.002,
94% of ∥VCKM∥ = 1.001

0.961 ≤ ∥Uint∥ ≤ 1.178
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Geometry and Volume: Q1

Q1. Amount of Space for n Neutrinos: Geometry and Volume

The Ω region is a subset of the unit ball of the spectral norm

B(n) = {A ∈ Cn×n : ∥A∥ ≤ 1}.

This fact allows us to give another characterization of the Ω region as the
intersection of the B(3) with the interval matrix Uint i.e.

Ω = B(3) ∩ Uint . (1)

Faces of the Ω region:

F = {U
(

Ir 0
0 A

)
V : A ∈ B(n − r)}.

Subsets Ω1, . . . ,Ω4 of the region Ω are (relative) interiors of faces F
of the unit ball B(3) under parameters restriction for U and V to the
experimental data and admissible eigenvalues of A.
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Geometry and Volume: Q1

From a Human Point of View

The extreme points of the B(n) are unitary matrices.
Edges correspond to 3 + 1.
Sides to 3 + 2.
Interiors to 3 + 3.

17 / 45



Geometry and Volume: Q1

(II): Physical Volume Vanishes with Descending Errors in Uint

CP-conserving CP-violating
Total volumes

SO(3) ⊂ O(3) ⊂ B̃(3) SU(3) ⊂ U(3) ⊂ B(3)
Experimentally restricted volumes

OPMNS ⊂ Ω̃ = B̃(3) ∩ Oint UPMNS ⊂ Ω = B(3) ∩ Uint

E.g.:

vol(B(n)) = 1
(2π)nn!

vol(U(n))2
∫ 1

0

n∏
k=1

σk

∏
i<j

|σ2
j − σ2

i |2
n∏

k=1

dσk .

vol(Ω) =
1

(2π)33!
vol(PMNS)2

∫ 1

σmin

n∏
k=1

σk

∏
i<j

|σ2
j − σ2

i |2
n∏

k=1

dσk .

Measuarement fidelity:

D ≡ 1 − IΩ
IB(3)

D��CP = 1 − 2.19 × 10−4 = 0.999781,

D̃CP = 1 − 1.8 × 10−5 = 0.999982,

DCKM = 1 − 1.077 × 10−26.
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Analysis of Data and Results: Q2

Q2: Can we distinguish between Ω1 − Ω3 (3+n models)?

�UPMNS = (I − α)W = TW ,

Data are global, for 3+n

Entry (I): m > EW (II): ∆m2 ≳ 100 eV2 (III): ∆m2 ∼ 0.1 − 1 eV2

T11 = 1 − α11 0.99870 ÷ 1 0.976 ÷ 1 0.990 ÷ 1
T22 = 1 − α22 0.99978 ÷ 1 0.978 ÷ 1 0.986 ÷ 1
T33 = 1 − α33 0.99720 ÷ 1 0.900 ÷ 1 0.900 ÷ 1

T21 = |α21| 0.0 ÷ 0.00068 0.0 ÷ 0.025 0.0 ÷ 0.017
T31 = |α31| 0.0 ÷ 0.00270 0.0 ÷ 0.069 0, 0 ÷ 0.045
T32 = |α32| 0.0 ÷ 0.00120 0.0 ÷ 0.012 0.0 ÷ 0.053

Σ = {σ1, σ2, σ3} →

 t11 0 0
t21 t22 0
t31 t32 t33

 ⊂ T =

 T11 0 0
T21 T22 0
T31 T32 T33


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Results

The 3+1 scenario (σ3 < 1): Results

(I): m > EW (II): ∆m2 ≳ 100 eV2 (III): ∆m2 ∼ 0.1 − 1 eV2

(1, 1) 0.99885 ÷ 0.99999 0.97641 ÷ 0.99996 0.99020 ÷ 0.99999
Exp: 0.99870 ÷ 1 0.976 ÷ 1 0.990 ÷ 1
(2, 2) 0.99980 ÷ 0.99999 0.99331 ÷ 0.99999 0.98646 ÷ 0.99999
Exp: 0.99978 ÷ 1 0.978 ÷ 1 0.986 ÷ 1
(3, 3) 0.99721 ÷ 0.99996 0.90040 ÷ 0.99985 0.90015 ÷ 0.99958
Exp: 0.99720 ÷ 1 0.900 ÷ 1 0.900 ÷ 1
(2, 1) 0.00001 ÷ 0.00062 0.00031 ÷0.02214 0.00014 ÷ 0.01615
Exp: 0.0 ÷ 0.00068 0.0 ÷ 0.025 0.0 ÷ 0.017
(3, 1) 0.00002 ÷ 0.00266 0.00048 ÷ 0.06892 0.00012 ÷ 0.04500
Exp: 0.0 ÷ 0.00270 0.0 ÷ 0.069 0.0 ÷ 0.045
(3, 2) 0.00008 ÷ 0.00113 0.00052 − 0.01196 0.00024 ÷ 0.05281
Exp: 0.0 ÷ 0.00120 0.0 ÷ 0.012 0.0 ÷ 0.053

Q2: Can we distinguish between Ω1 − Ω3 (3+n models)?

3+1 is different. So far no distinction between 3+2 and 3+3 scenarios is
possible (results overlap with T ).

Note non-zero lower bounds (in blue), the biggest differences are in red.
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Analysis of Data and Results: Q3 3+1 scenario

Q3: Can We Estimate Active-Sterile Mixing Using Singular Values and Uint?

Ω1 : 3+1 scenario: Σ = {σ1 = 1.0, σ2 = 1.0, σ3 < 1.0}

(
�UPMNS Ulh

Uhl Uhh

)
=

(
W1 0
0 W2

)
1 0 0 0
0 1 0 0
0 0 c −s
0 0 s c

( Q†
1 0

0 Q†
2

)
.

We are interested in the estimation of the light-heavy mixing sector which is
given by

Ulh = W1S12Q†
2,

where W1 ∈ C3×3 is unitary, S12 = (0,0,−s)T and Q2 = eiθ, θ ∈ (0,2π].
Taking into account exact values of the W1 we can estimate the
light-heavy mixing by the analytical formula

|Ui4| = |wi3| · |
√

1 − σ2
3|, i = e, µ, τ.
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Analysis of Data and Results: Q3 3+1 scenario

Answer to Q3: Estimation of the "light-heavy" mixing: Results for 3+1

Estimation of the "light-heavy" mixing via CS decomposition
(I): m > EW.

Ours : |Ue4| ∈ [0, 0.021] , |Uµ4| ∈ [0.00013, 0.021] , |Uτ4| ∈ [0.0115, 0.075] .

Others : |Ue4| ≤ 0.041 , |Uµ4| ≤ 0.030 , |Uτ4| ≤ 0.087 [J. de Blas, 2013]

(II): ∆m2 ≳ 100 eV2.

Ours : |Ue4| ∈ [0, 0.082] , |Uµ4| ∈ [0.00052, 0.099] , |Uτ4| ∈ [0.0365, 0.44] .

(III): ∆m2 ∼ 0.1 − 1 eV2.

Ours : |Ue4| ∈ [0, 0.130] , |Uµ4| ∈ [0.00052, 0.167] , |Uτ4| ∈ [0.0365, 0.436] .

Others : |Ue4| ∈ [0.114, 0.167] , |Uµ4| ∈ [0.0911, 0.148] , |Uτ4| ≤ 0.361 .

[C. Giunti et al., 2017] [M. Dantler et al., 2018]

−→ In some cases we improved (blue), in some not (red).
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Mixings and Masses: Eigenvectors and Eigenvalues

How Light and Heavy Masses (Eigenvalues) Influence Active-Sterile Mixings

(Eigenvectors)?

Seesaw (SS) mass matrix

MSS =

(
0 MD

MT
D MR

)
, |MD| ≪ |MR |

When 3 light νs? SS-I, II, III, ESS, ISS, LSS - we can
rearange to the same structure,
W. Flieger, JG, Chin.Phys.C 45 (2021) 2, 023106

|MD | ≪ λ(MR), λ(MSS) ≃ λ(MR)± |MD |

https://www.symmetrymagazine.org

A relation between light and heavy masses and their mixings

∥ sinΘ(VLight ,V
′

heavy )∥ ≤ 1
δ
∥MSS − MR∥ =

1
δ
∥MD∥, δ = min(MNi )− max(mνj )

———————————————————
P. Denton et al, Bull.Am.Math.Soc. 59 (2022) 1

|vi,j |2
n∏

k=1;k ̸=i

(λi (A)− λk (A)) =
n−1∏
k=1

(
λi (A)− λk (Mj )

)
.
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Summary

To be (3ν) or not to be (3ν)

We investigated Uint within matrix theory defining admissible region Ω and
analyzing Ω geometrical structure, and based on that we discussed:

Q1 How much space do we have for the additional neutrinos and how
quantify it within our approach?
=⇒ A lot.
We can judge on that using Uint (singular values of Uint and volumes of
admissible CP,��CP mixing matrices).

Q2 Can we distinguish between Ω1 − Ω3 (3+N models) using Uint?
−→ Difficult.
3+1 is different. So far no distinction between 3+2 and 3+3 scenarios is possible
(results overlap with complete T -matrix data in both cases).

Q3 Can we estimate active-sterile mixing using singular values and Uint?
−→ Yes.
We estimated it in the 3+1 scenario using dilation and CS decomposition, getting
for some ∆m2 mass scenarios better constraints than from other analysis (slide
22).
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Outlook

To be (3ν) or not to be (3ν)

Better precision of future ν-experiments can open a way to distinguish
between 3 + n mixings using the approach based on prescribed singular
values.

Matrix theory can help to find relations between eigenvectors,
eigenvalues of light and heavy mass spectrum
−→ mass matrix modeling.

Thank you for your attention, and the Organizers for the invitation.
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Backup slides

Backup slides
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Backup slides

Neff : (Good) Things Come in 3s?

The Number of Neutrino Species,
D. Denegri, B. Sadoulet, M. Spiro, Rev.Mod.Phys. 62 (1990) 1

SLC, Nν = 3.8 ± 1.4
106 Z events

1989:
Initial measurements of Z-boson resonance parameters in e+e annihilation, SLC Colaboration
Phys. Rev. Lett. 63, 724
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Backup slides

Neff : LEP and Now

ALEPH, OPAL, L3, DELPHI, MARKII (SLC): Nν = 3.12 ± 0.19
CERN, 13.10.1989, Video (∼12,000 Z decays)
[LEP, 2006] (∼17 mln Z decays)

Nν = 2.9840 ± 0.0082

Update: [P. Janot and S. Jadach, 2019](only 1σ off from N=3)

Nν = 2.9963 ± 0.0074

Theorem: [C. Jarlskog, 1990]
In the Standard Model with n left-handed lepton doublets and N − n
right-handed neutrinos, the effective number of neutrinos, Nν , defined by

Γ(Z → ν′s) ≡ NνΓ0,

where Γ0 is the standard width for one masseless neutrino, satisfies

Nν ≤ n.

Cosmology: Neff = 3.044. J. Froustey, C. Pitrou, M. Volpe, JCAP 12 (2020) 015,
J. Bennett, G. Buldgen, M. Drewes, Y. Wong, JCAP 03 (2020) 003, JCAP 03 (2021) A01
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Backup slides

Determination of UPMNS entries

UPMNS =

 Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3


Appearence/Disappearence, SBL/LBL experiments sensitive to different
UPMNS entries or their combinations.

E.g., Ue3 - Daya Bay (ν̄e disappearence).

Least knowledge about the τ entries.
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Backup slides

Determination of UPMNS entries
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Backup slides
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Backup slides

Determination of UPMNS entries
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Backup slides

Singular values

Singular values σi of a given matrix A are positive square roots of the
eigenvalues λi of the matrix AA†

σi(A) =
√
λi(AA†)

Properties:

generalization of eigenvalues

always non-negative

stable under perturbations

Unitary matrices

UU† = I = diag(1,1, ...,1) =⇒ all singular values equal to 1
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Backup slides

Unitarity and Contraction: a Toy/Naive Example

For UPMNS holds ∑
α

Pαβ = 1,

However, for a nonunitary U this relation is not fulfilled. Θ2 = Θ1 + ϵ

Utoy =

(
cosΘ1 sinΘ1
− sinΘ2 cosΘ2

)
In this case we get, ∆ij ∝ (m2

i − m2
j )

L
E

Pee + Peµ = 1 + 4ϵ sin2 ∆21 sinΘ1 cosΘ1 cos2Θ1 +O(ϵ2)

Pµe + Pµµ = 1 − 4ϵ sin2 ∆21 sinΘ1 cosΘ1 cos2Θ1 +O(ϵ2)

Calculating the contraction, we get a unique answer about the non-physical
features of matrices:

∥Utoy∥ ≥ 1.
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Backup slides

Unitary dilation: an example
As an illustration let us take two UPMNS matrices

U1 : θ12 = 31.38◦, θ23 = 38.4◦, θ13 = 7.99◦,

U2 : θ12 = 35.99◦, θ23 = 52.8◦, θ13 = 8.90◦,

and let us construct a contraction as

V =
1
2

U1 +
1
2

U2,

The set of singular values

σ1(V ) = 1, σ2(V ) = 0.991, σ3(V ) = 0.991

for which we get the following unitary dilation

U =

 0.822411 0.548133 0.146854 0.0169583 −0.0368511
−0.468394 0.520442 0.70103 −0.133845 0.0197681
0.311417 −0.643236 0.686702 0.0250273 0.130689

−0.0524981 0.122242 −0.0336064 0.599485 0.788536
−0.0671638 0.00403263 0.119588 0.788536 −0.599485


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Amount of space for n neutrinos: Analysis

Construction of matrices with prescribed singular values, e.g., in 3+1
scenario we take σ1 = 1, σ2 = 1, σ3 < 1, together with the requirement
on the elements to stay within experimental limits.

Go with the "free" singular values as low as possible, e.g., in the 3+1
scenario we take σ3 the smallest possible.

36 / 45



Backup slides

Distinction of the 3+1 scenario: Analysis

σ1 = σ2 = 1.

In each massive scenario 108 matrices are produced, starting from σ3 as
large as possible and lowering it systematically to the smallest obtained
value (previous slide).

For each value of σ3 the smallest and the largest values of produced
matrix elements are taken.

Repeating the procedure over possible σ3 values, the allowed ranges of
the 3 × 3 matrix elements are determined.
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Narrowing mixing spreads for individual sing. val.

Generation of matrices with a prescribed set of singular values
and with elements within experimental ranges.
From the set of these matrices take the smallest and the largest
value of each element.

E.g.: ∆m2 ≳ 100 eV2,Σ = {1,1,0.900} :

|A0.900| = 0.999623 ÷ 0.999999 (1.5%) 0 0
0.000002 ÷ 0.000753 (3%) 0.999623 ÷ 0.999999 (2%) 0

0.000606 ÷ 0.011919 (16%) 0.000606 ÷ 0.011923 (94%) 0.900002 ÷ 0.900678 (1%)


Values in the brackets represent the percentage of the current
experimental bounds.
For the other massive cases these values do not exceed 15%.

38 / 45



Backup slides

Matrix norm

A matrix norm is a function ∥ · ∥ from the set of all complex (real matrices) into
R that satisfies the following properties

∥A∥ ≥ 0 and ∥A∥ = 0 ⇐⇒ A = 0,
∥αA∥ = |α|∥A∥, α ∈ C,

∥A + B∥ ≤ ∥A∥+ ∥B∥,
∥AB∥ ≤ ∥A∥∥B∥

Examples of matrix norms

spectral norm: ∥A∥ = max∥x∥2=1 ∥Ax∥2 = σ1(A)

Frobenius norm: ∥A∥F =
√

Tr(A†A) =
√∑n

i,j=1 |aij |2 =
√∑n

i=1 σ
2
i

maximum absolute column sum norm:
∥A∥1 = max∥x∥1=1 ∥Ax∥∞ = maxj

∑
i |aij |

maximum absolute row sum norm:
∥A∥∞ = max∥x∥∞=1 ∥Ax∥∞ = maxi

∑
j |aij |
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Weyl’s inequality for singular values

Let A and B be a m × n matrices and let q = min{m,n}. Then

σj(A + B) ≤ σi(A) + σj−i+1(B) for i ≤ j
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Error Estimation

Let us assume that the V matrix which realizes some BSM scenario includes
an error matrix E which is of the form V + E . Using Weyl inequalities for
decreasingly ordered pairs of singular values of V and V + E , the following
relation takes place

|σi(V + E)− σi(V )| ≤ ||E ||.
A precision for elements of the A in the m > EW is 10−5. In our analysis we
keep the same precision for all massive cases. This does not contradict
experimental results since we still work within experimentally established
intervals. Thus, all entries of Error matrix can be taken as Eij ≈ 0.00001.
Therefore, uncertainty of the calculated singular values is bounded by
||E || = 0.00003.
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Algorithm

The following steps lead to a contraction settled by UPMNS and then to its unitary dilation of a
minimal dimension
1) Select a finite number of unitary matrices Ui , i = 1, 2, ...m, within experimentally allowed
range of parameters θ13, θ23 and δ.
2) Construct a contraction U11 as a convex combination of selected matrices Ui

V =
m∑

i=1

αi Ui , α1, ..., αm ≥ 0,
m∑

i=1

αi = 1.

3) Find singular value decomposition of V , i.e.

V = W1ΣQ†
1

where W1,Q1 are unitary, Σ is diagonal, and determine number η of singular values strictly less
than 1.
4) Use CS decomposition

U =

(
UPMNS Ulh
Uhl Uhh

)
=

(
W1 0
0 W2

) Ir 0 0
0 C −S
0 S C

( Q†
1 0

0 Q†
2

)

to find the unitary dilation U ∈ M(3+η)×(3+η) of contraction U11.
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Results on slide 21 have been obtained by taking exact maximal values of
we3,wµ3 and wτ3, which follow from the singular value decomposition.

|Ui4| = |wi3| · |
√

1 − σ2
3 |, i = e, µ, τ.

0.9970 0.9975 0.9980 0.9985 0.9990 0.9995

0.012

0.014

0.016

0.018

0.020
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FCC-ee, Tera-Z option

meV

eV

keV

MeV

GeV

TeV

νννν1

νννν2

νννν3

N1

N2, N3

constrained: 

mass: 1-50 keV

mixing :

10-7 to 10-13

can generate Baryon Asymmetry of Universe

if mN2,N3 > 140 MeV 

decay time: 

ττττN1 > ττττUniverse

N1���� v γγγγ may have been seen: 

arxiv:1402:2301 and arxiv:1402.4119

Blondel et al 1411.5230
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nν ≡
(
Γinv

Γlept

)meas/(
Γνν̄
Γlept

)SM

Nν = 2.9840 ± 0.0082 ALEPH, 2005
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