Recent MicroBooNE Cross-section Results: Neutrino-Induced Baryon Production

Afroditi Papadopoulou

On behalf of the **HBOONE** collaboration

NuFACT 2022

Need for Accurate Understanding of Neutrino Interactions

- Broad neutrino spectra
- Various complex interaction mechanisms
- Mismodeling can limit experimental sensitivity

Х

Quasi-elastic (QE)

Meson Exchange

Current (MEC)

Resonance (RES)

Deep Inelastic

Scattering (DIS)

10 cm

Color scale shows deposited charge

Final State

D

р

- Liquid argon time projection chamber (LArTPC) like SBN & DUNE
- Low detection thresholds
- Precise calorimetric information

Also see talks by <u>S.Gollapinni</u> & <u>M.Ross-Lonergan</u>

BNB DATA : RUN 5211 EVENT 1225. FEBRUARY 29, 2016

Initial State

Ar

Vμ

10 cm

Color scale shows deposited charge

Final State

p

р

• Largest available neutrino-argon data set with ~500k recorded neutrino interactions

Also see talks by <u>X.Ji</u>, <u>E.Gramellini</u> & <u>K.Sutton</u>

• ~35 active MicroBooNE cross-section analyses

• Many focus on topologies with detected hadrons

BNB DATA : RUN 5211 EVENT 1225. FEBRUARY 29, 2016

Vµ

Initial State

Ar

Hadronic Energy Modeling Is Crucial for Neutrino Calorimetry

• Oscillation measurements require understanding of energy-dependent event rates

"Easy" "Hard" $E_{\nu} = E_{\ell} + \omega$

• $E_{Cal} \simeq E_{\nu}$: add up everything & correct for missing energy

$$\omega = E_{had} + E_{miss}$$

• E_{miss} can be a large fraction of the total

Hadronic Energy Modeling Is Crucial for Neutrino Calorimetry

• Oscillation measurements require understanding of energy-dependent event rates

"Easy" "Hard" $E_{\nu} = E_{\ell} + \omega$

• $E_{Cal} \simeq E_{\nu}$: add up everything & correct for missing energy

- Current simulations do not describe the bias well
- Benchmarked with electron beam data (monoenergetic, high-statistics)

Nature 599, 565-570 (2021)

Answering Key Hadronic Modeling Questions With MicroBooNE

Four examples with baryons in this talk

- Transverse kinematic imbalance
- Two-proton final states
- Lambda-baryon production
- Exclusive electron neutrino measurement

Nature 599, 565-570 (2021)

• $\delta \mathbf{p}_{\mathrm{T}} = |\mathbf{p}_{\mathrm{T}}^{\mu} + \mathbf{p}_{\mathrm{T}}^{p}| = 0$

Transverse projections equal and opposite due to momentum conservation

$$\delta \mathbf{p}_{\mathrm{T}} = \left| \mathbf{p}_{\mathrm{T}}^{\mu} + \mathbf{p}_{\mathrm{T}}^{p} \right| > 0$$

Imbalance due to initial nucleon motion and other nuclear effects

Adapted from S. Dolan, "Exploring nuclear effects with transverse imbalances" ¹⁰

ν_{μ} CC1p0 π TKI

- First neutrino-argon differential cross section in TKI variables
- Sensitive to initial nucleon motion & proton FSI modeling

MICROBOONE-NOTE-1108-PUB Also see poster by <u>I.Book</u> (award winner)

p^p_T

δp_T

-p^µ

 $\delta \alpha_{\rm T}$

ν_{μ} CC1p0 π TKI

- Extension to 2D for the first time on any neutrino target
- Probe regions with greater model discrimination power

MICROBOONE-NOTE-1108-PUB Also see poster by <u>I.Book</u> (award winner)

p^p_T

δp_T

-p^µ

 $\delta \alpha_{T}$

- First neutrino-argon cross sections for an exclusive 2p final state
 - Various observables studied
- γ_{Lab}: angle between the two protons
 Sensitive to modeling choices for MEC and QE

- First neutrino-argon cross sections for an exclusive 2p final state
 - Various observables studied
- γ_{Lab} : angle between the two protons - Sensitive to modeling choices for MEC and QE

- First neutrino-argon cross sections for an exclusive 2p final state
 - Various observables studied
- γ_{Lab} : angle between the two protons
 - Sensitive to modeling choices for MEC and QE
- Data-MC shape & normalization differences identified

$\bar{\nu}_{\mu} \Lambda$ Production

- Cabibbo suppressed reaction
- Sensitivity to cross section modeling and final state interaction parameters
- Very distinct "track + V shape" topology
- Challenging analysis!
- Expect ~40 interactions in ~2M triggers before any selection

$\bar{\nu}_{\mu} \Lambda$ Production

Event Selection

- Selection identifies a muon candidate and a proton-pion candidate pair
- Proton-pion "island" activity separated from muon candidate
- \bullet Proton-pion kinematics consistency with Λ baryon decay

Also see poster by <u>C.Thorpe</u> MICROBOONE-NOTE-1097-PUB

$\bar{\nu}_{_{\mu}} \Lambda$ Production

 Λ baryon decay consistency

• Keeping events with 1.09 < invariant mass W < 1.14 GeV/c² and angular deviation $\alpha < 14^{\circ}$

Signal $\times 20$

Dirt

450 400 400

350

150

Other Hyperon

EXT

Other v

21

MicroBooNE Simulation, Preliminary NuMI FHC, 1.0×10^{21} POT

$\nu_e \operatorname{CCNp0}{\pi}$

- First differential measurement in lepton and leading proton kinematics
- Data shows best agreement with the generators that predict a lower overall cross section (GENIE v3, NuWro)

$\nu_e \operatorname{CCNp0}{\pi}$

• First measurement to characterize proton production across the visibility threshold on argon

Summary

• MicroBooNE is paving the path towards high precision modeling with baryons

da/dKE_P |

True $\cos(\gamma_{lab})$

Thank you!

MicroBooNE Public Notes

Backup Slides

Goal: Oscillation parameter extraction with few-percent level uncertainties Need: precise neutrino-nucleus cross-section modeling Start: Short-Baseline Neutrino Program Status: ~500k v scattering events with MicroBooNE

Completed Collecting data data collection

Data collection starts in 2023

Data collection starts in ~2030

85 ton Liquid Argon Time Projection Chamber (LArTPC) JINST 12, P02017 (2017)

Time Projection Chambers

 ν_{μ} CC2p0 π

- 65% purity & 13% efficiency
- 3157 selected data events

 ν_{μ} CC2p0 π

31

- $\gamma_{\mu, PL + PR}$: angle between the muon and the vector sum of the two protons
 - Sensitive to modeling choices for MEC and QE

MICROBOONE-NOTE-1108-PUB

p^p_T

-p^µ

$\nu_{\mu} \Lambda$ Production

- Uses NuMI flux
- 7% efficiency
- 99.9% background rejection
- Monte Carlo simulation predicts 9.0 ± 0.8 (MC stat.) signal and 3.1 ± 1.4 background events
- Combining 1.0 × 10²¹ protons on target of neutrino mode flux and 1.3 × 10²¹ protons on target of anti-neutrino mode flux
 Significance of 2.6 σ

$\nu_{\mu} \Lambda$ Production

α Parameter

Angle between the direction of the Λ's momentum vector and the line connecting the primary vertex to the decay vertex.

Figure: α angle calculation.

Figure: Values for signal and BG.

 $\nu_e \operatorname{CCNp0}{\pi}$

• First energy and angle measurements for outgoing electron and leading proton on argon

