

Status of the NINJA experiment

Takahiro Odagawa (Kyoto University) for the NINJA Collaboration

The 23rd International Workshop on Neutrinos from Accelerators August 5th, 2022 @ the Cliff Lodge at Snowbird

NINJA

- Neutrino Interaction research with Nuclear emulsion and J-PARC Accelerator
- Measurement of low-momentum charged hadrons from neutrino-nucleus interactions with high spatial resolution of <u>emulsion detectors</u>.

Proton momentum (NEUT5.4.0, water 2p2h interaction)

NINJA pilot runs

- J-PARC T60 : Feb. May 2016 (65 kg Fe target)
- J-PARC T68 : Oct. 2017 May 2018
 (3 kg water target)

Phys. Rev. D 102, 072006 (2020).

NINJA physics run String NINJA

- J-PARC E71a : Nov. 2019 Feb. 2020
 (75 kg water target)
- First physics run of the NINJA experiment

Detectors

• Emulsion/scintillator hybrid apparatus

Position/angle○△Time×○○Particle IDProton/pion×Muon IDTime stamper b b b b b b b b b b b b b b b b b b b		ECC	Time stamper	MRD
Time×Particle IDProton/pion×Muon IDTime stamper b b b b c c c c c c c c c c c c c c c c	Position/angle	\bigcirc	\bigcirc	\bigtriangleup
Particle ID Proton/pion X Muon ID	Time	×	\bigcirc	\bigcirc
Time stamper MRD Baby MIND	Particle ID	Proton/pion	×	Muon ID
	Lime stamp L L L L ECC	oer MRD (Baby MI	ND)	WAGASCI NINJA

Nucl. Instrum. Methods Phys. Res. A 1034, 166775 (2022).

ECC

- Emulsion Cloud Chamber (ECC) is our main target detector. (8 kg water chamber x 9 -> 75 kg water)
- 2.3 mm thick water layers + emulsion films
- High spatial resolution, wide angular acceptance, and low momentum threshold

Momentum

• We have a few choices for the momentum reconstruction.

	Muon	Proton	Pion
Baby MIND Range	When the particle stops in Baby MIND FV	N/A	N/A
ECC Range	N/A	When the particle stops in ECC FV	N/A
ECC MCS	When the particle does not stop in Baby MIND FV	When the particle escapes from ECC FV	All pions

Multiple Coulomb scattering

- Charged particles are scattered by each material layer (Multiple Coulomb scattering : MCS).
- Nuclear emulsion can measure small scattering angle, e.g. O(mrad) scattering of 1 GeV/c particle by a 0.5 mm Fe layer.
 - -> Convert scattering angles into momentum

arXiv:2207.06640

Muon momentum

9

PID

 Using momentum reconstructed by ECC MCS and silver grain density of the track (VPH), PID is applied to each hadron track.

Proton stopping in ECC -> ECC range
 Otherwise -> ECC MCS

ECC

ECC range method has a good resolution (~ a few %) while MCS method can measure a wide phase space

11

Muon distribution

- CC inclusive events with one ECC (out of nine)
 -> ~ 8 kg water
- Momentum is range-method only

Muon angle

Muon range momentum

Muon distribution

• Muon 2-d kinematics (range only)

Proton distribution SNINJA

- Proton kinematics
- Protons down to 200 MeV/c are detected with wide angular acceptance.

Proton distribution VINJA

Proton 2-d kinematics

2d histogram : MC (signal only) Plots : Data

Multiplicity

*∽*NINJA

- Charged particle multiplicity
- Proton ($p\beta \lesssim 1 \,\text{GeV}/c$) multiplicity

NINJA future

- J-PARC T81 : Mar. Apr. 2021 (9 kg heavy water target)
 -> We try to analyze neutrino scattering on (quasi-)free neutron.
- J-PARC E71b : (planned in Fall 2023, 300 kg water target) -> Automated film production and higherspeed scanning system realize a larger detector.
- We can measure neutrino interactions on various targets (H₂O, D₂O, Fe, CH, Emulsion…)

Summary

- NINJA experiment aims to measure neutrino-water interactions with 200 MeV/c proton threshold.
- Distributions of charged particles' kinematics from the interactions are shown.
- We will increase statistics (x 9) and improve our understandings to the detectors and other systematic uncertainties.
- Preparation for the future runs are also ongoing.

Backup

Event display

 We detect sub to a few cm length track with a high sampling rate

Proton Efficiency

 We achieve a high proton detection efficiency in a few - several hundred MeV/c region.

Muon phase space Space

		Baby MIND Range	ECC MCS
<section-header><section-header><section-header></section-header></section-header></section-header>	Minimum	300 MeV/c (3 layers of Baby MIND)	
	Maximum	1.5 GeV/c	a few GeV/c
	Resolution	5-10%	10-30%
	Maximum	$ \tan \theta_{x(y)} < 1.5 - 2.5 \sim 56^{\circ}$	
	Resolution	O(mrad)	

Hadron phase space VINJA

		Range	MCS
Momentum	Minimum	200 MeV/c (p) 50 MeV/c (π)	_
	Maximum	< 1 GeV/c (p)	a few GeV/c
	Resolution	a few %	10-30%
Angle	Maximum	$ \tan\theta_{x(y)} < 4.0 \sim 76^{\circ}$	
	Resolution	O(mrad)	