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is monitored at single particle level by calorimetric techniques, i.e. tagging 
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Design optimized to reach a O(1%) precision on the ν
e 
flux → ν

e
 flux prediction = e+ counting 

Two main steps:  
● layout of the π/K focusing and transport system with suitable proton extraction schemes
● special instrumented beamline capable of performing lepton monitoring from decays of K in a ν beam 

decay tunnel at single particle level  

Muon monitoring 
π+ → μ+ ν

μ

Positrons from: K+ → π0 e+ ν
e

Muons from: K+ → μ+ ν
μ
, K+ → π0 μ+ ν

μ

sign&momentum
selection

PIMENT project



Beamline design and 
simulation

Detector development
and characterization

Assessment of systematics 
and performance
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The ENUBET project



Beamline design and simulation



Beamline design
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Requirements:

● Use of conventional normal-conducting magnets

● Keep under control level of background transported to the tunnel: fine tuning of shielding and collimators

● Careful optics design: non decaying particles should exit the decay pipe without hitting the walls

● Maximize number of K+ at tunnel entrance  

● Minimize total length of the transferline (~20 m) to reduce kaon decay in the not instrumented region

Design process:

● Tune beamline optics with TRANSPORT

● Implementation and validation with G4beamline/GEANT4

● Doses & neutron shielding: FLUKA
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p dump

Inermet180 
absorbers

total bending: 14.8°
tagger length: 40 m

Single 
quadrupoles

Target
and W foil

The ENUBET transferline

70 cm graphite rod, 
Ø = 6 cm

proton interactions 
with target: FLUKA 

normal-conducting 
magnets

3 cylindrical 
layers proton 
and hadron 

dump

W foil

Improved shielding - 
W foil (50 mm): dumps 
low energy e+ entering 
tunnel

Improved shielding - Plug: 
dumps low energy particles 
hitting the tagger, 
backgrounds reduced

Plug

to ~
500 

t 

ν de
tect

or

at 1
00 m

 

from
 tar

get

Reference beamline: 8.5 GeV, 10% momentum bite.
Focusing system: a quadrupole triplet before the bending magnets (14.8° bending)

→ Larger bending angle (w.r.t. original proposal) and increased length

→ Better collimated beam and reduced backgrounds
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Copper collimators

GEANT4/G4beamline



Beamline optimization studies
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Goal: improvement of S/N ratio
→ enhancing π/K flux at tunnel entrance while keeping background level low

Strategy: scan parameters space of beamline to maximize the Figure Of Merit

Full facility implemented in GEANT4 allows to control all parameters with external cards . 
Optimization with developed framework based on a genetic algorithm

FOM: K+ at tunnel entrance (signal) scaled by background particles hitting tunnel walls 
(positrons & pions from beamline and not from tunnel K

e3
 events)

Convergence in ~100 
iteration

Last two 
collimators 
(Inermet180) 

before decay 
tunnel: 5 

parameters

Scan of parameter space with 
FOM value in color scale
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Beamline optimization studies
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FOM: signal/background

Signal = K+ at tunnel entrance 
Background = positrons and pions hitting tunnel walls from beamline and not from tunnel events

Rates at tunnel 
entrance

π+ [10-3]/POT K+ [10-3]/POT

Design 4.13 0.34

Optimized  5.27  0.44

Background hitting 
tunnel walls e+ [10-3]/K π+ [10-3]/K

Design 7 59

Optimized 2  35
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Preliminary results:
~28% gain in flux

~2.4 years to 104 v
e

cc

Signal 
positrons

Background 
positrons

Momentum 
of e+ hitting 
tunnel walls

Design

Optimized

Preliminary
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Spectra of particles at tagger entrance
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Contributions  from different parts of the ENUBET facility

~1.5 increase wrt 
previous results

● main component 
produced in p 
dump

● clear separation 
from K

e3
 neutrinos 

● straight section 
before tagger

● hadron dump

Rates at tagger entrance
for 400 GeV POT

π+ [10-3]/POT K+ [10-3]/POT

4.13  0.34

Assumption: 500 t neutrino detector located 50 m from the hadron dump

→ 104 fully reconstructed ν
e

CC in about 3 y of data taking 

Events:

● 80% directly monitored (positrons in the decay tunnel)

● 10% from decay in the transfer line (straight section in front of the 
tagger, pointing to the detector)
→ removable with simulation

● 10% low energy events from early decays of kaons
→ removable with energy cut.



More on the ENUBET beamline  
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FLUKA

● A detailed FLUKA simulation of the setup has been 
implemented (includes proper shielding around the 
magnetic elements)

● Hottest point: first collimator and quadrupole 
closest to target

● After first bending: reduction of dose to beamline 
elements

● Layer of borated polyethylene shielding for 
SiPMs and electronics

● Proton extraction schemes

● Target studies

● Beamline optimization

● Proton and Hadron dump design

● New beamline design that covers a larger 
momentum range: Multi Momentum Beamline

Dose for 1020 POT [Gy]

Dipole

Quadrupole 
triplet

Quadrupole 
triplet

Single focusing
quadrupole

Dipole

Target 

Collimator 
and W foil

→ talk by E.Parozzi
“The design of the ENUBET beamline”

WG3: Accelerator Physics
on Friday (Aug 5th)



Detector development and 
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Calorimeter Longitudinal segmentation: three radial layers (LCM = Lateral 
Compact Modules) , plastic scintillator + iron absorber
→ e+/π+/μ separation

Light readout system SiPMs on top of the calorimeter, above 
a borated polyethylene shield

Lateral light readout system: WLS fibers running along the edges of the tiles 
→ reduced (x18) neutron damage the SiPMs

Photon veto Plastic scintillator tiles arranged in doublets forming inner rings
→ π0 rejection

September 2018 @ CERN-PS:
response to MIP, e and π tested for 
a calorimeter prototype and an 
integrated photno veto “t

0
-layer”.

November 2021 @ CERN-PS: small 
prototype ("Enubino") used to test 
new fiber redout scheme 
 

t0-layer

LCM 
3x3x11 cm3
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ν
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Event topology:

ENUBET e+ mean 
angle: 88 mrad

Photon veto 
working principle

Decay tunnel instrumentation
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Tested during 2018 test beams runs @ CERN-PS

● 1 LCM = 4.3 radiation lengths

● compact sampling calorimeter

● large SiPM area (4x4 mm2) for 10 WLS fibers

● Internal photon veto layer (scintillator doublet)

● Space for shielding (factor 18 dose reduction)

Prototype successfully tested!

● new prototype: “Enubino”
(pre-demonstrator)
→ new fiber redout scheme + BPE

● larger prototype: “Demonstrator”
→ final experimental validation 
(performance / scalability / cost 
effectiveness)

Prototypes & tests

Electron energy resolution 1mip/2mip separation  

photon veto layer

LCM

SiPMs

F. Acerbi et al, JINST 15 (2020) P08001
14



ENUBINO
Borated polyethylene

Iron
Scintillator

t0

t0

LCM
LCM
LCM

LCM

LC
M

LC
M

t0

t0

SiPMs

Enubino

Efficiency map Uniformity

LCM LCM LCM t0 LCM LCM LCM t0

15

2021 test beam @ CERN-PS: Enubino

● Sampling calorimeter: plastic scintillator + 
iron absorber + BPE

● Fibers collect the scintillation light 
frontally 

● uniform light collection

● fiber routing through BPE to SIPMs

New frontal readout scheme & fibers bundling:

● 10 WLS fibers (1 LCM) bundled to a 4×4 mm2 
SiPM

● 2 WLS fibers for each t0 tile 
bundled to a 4×4 mm2 
SiPM

→ efficiency & uniformity 
    studies using mips



Demonstrator
The prototype of the tagger is under construction for a final

experimental validation at CERN-PS in October 2022

● Calorimeter + photon veto + shielding  (30 cm BPE)

● 1.65 m long, 90° in azimuth

● Central 45° part instrumented: rest is kept for mechanical 
considerations

● 75 layers of iron (1.5 mm thick) + scintillator (7 mm thick) 
→ 15x3x25 LCMs

● Modular design: can be extended to a full 2π object by joining 4 similar detectors (minimal dead regions)

● New light readout scheme with frontal grooves  (from Enubino)

● Routers for the optical fibers produced 3D printers

● In progress: custom digitizers and SiPM powering boards

Demonstrator

90°, half 
instrumented

1.65 
m
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Demonstrator

90°, half 
instrumented

1.65 
m

Demonstrator weight: ~3.2 t

6375 
scintillator

tiles

Borated 
polyethylene

1875 channels 

@ INFN-LNL laboratories



Assessment of systematics and 
performance



Lepton reconstruction
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Visible energy Full GEANT4 simulation of the detector validated by prototype tests

● particle propagation and decay from transfer line to detector

● hit level detector response

● pile-up effects included

● Large-angle positrons and muons from K decays → patterns in energy 
depositions in tagger
→  use tagger granularity to separate EM showers / Hadronic showers / MIP 
+ photon veto

● Signal identification done using a Neural Network trained on a set of 
discriminating variables

● Reconstruction performance in terms of Signal to Noise ratio (S/N) and 
efficiency 

K
e3

 positrons: S/N: 2

Efficiency: 22% (efficiency is ~half geometrical)

K
μ3

, K
μ3

 muons: S/N: 6

Efficiency: 34% (efficiency is ~half geometrical) 
F. Pupilli et al., PoS NEUTEL2017 (2018) 078

Tagger impact point

Eff = 22%
S/N = 2

Eff = 34%
S/N = 6



Monitored ν beam : measure rate of leptons @ tagger ↔ monitor ν flux

• build a Signal + Background model to fit lepton observables

• include hadro-production (HP) and transfer line (TL) systematics as nuisances

Hadro-production data from NA56/SPY experiment used to:

• Reweight MC lepton templates and get their nominal distribution

• Compute lepton templates variations using multi-universe method

Assessment of systematics

20
A. Branca et al. PoS NuFact2021 (2022), 030



Impact of HP systematics on neutrino flux

HP = hadro-production

Neutrino interaction rates @ detector Pre & Post fit relative errors on rates Total rates assuming 

● 500 ton neutrino detector at 50 m

● CERN-SPS as driver

● 4.5 1019 POT

Before constraint: 6% systematics

due to hadro-production uncertainties

After constraint: 1% systematics

from fit to lepton rates measured

by tagger

Achieved ENUBET
goal of 1% systematics from

lepton monitoring!

21

ν
e

CC

ν
μ

CC



Summary and conclusions
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ENUBET goal: first monitored neutrino beam for neutrino cross-section measurements @ O(1%):

● ERC project started in 2016-2022;

● CERN experiment (NP06) within Neutrino Platform 2019-2024;

Final design of beamline in place, fine-tuning in progress

● static transfer line: 104 ν
e

CC events in 2/3 years (SPS)

● optimization of transfer line parameters with dedicated framework in progress

Design of decay tunnel instrumentation finalized

● prototypes testbeams @ CERN: technology validation

● final demonstrator of the tagger under construction, to be tested in 2022

Tagger detector simulation

● good PID performance achieved on both positron and muon reconstruction

Systematics

● achieved 1% systematic goal due to hadro-production with lepton monitoring

● assessment of systematics due to detector and beamline in progress 



Thank you!

http://enubet.pd.infn.it/

http://enubet.pd.infn.it/
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Overview

25

From π

From K

Estimation of neutrino
energy from impact 
radius @detector

At ~3 (1) GeV: 10% (20%) 
precision on energy 
for the π component

(DUNE/HK energy range) 

Next generation long-baseline experiments (DUNE, HyperK): precision ν oscillation measurements
● Neutrino mass hierarchy
● CP violation in the leptonic sector
● Test of 3-neutrino paradigm
Also neutrino interaction models would benefit from improved precision on cross-sections measurements

Goal of ENUBET : design a narrow-band neutrino beam to measure
• neutrino cross-section and flavor composition at 1% precision level
• neutrino energy at 10% precision level

→ Narrow band beam: correlation between ν energy and distance of the interaction vertex from the beam axis 

→ Very good knowledge needed!

N
νe

FAR = P(ν
μ
→

 
ν

e
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νe
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Proton target design
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Optimum particle production: primary proton beam = 400 GeV, secondary kaons momentum ~8.5 GeV. 

Goal: maximise K production in region of interest.
● Optimization of transverse dimensions and length
● Test of di erent materials (Graphite, Beryllium, Inconel)ff

FLUKA + G4beamline simulations

→ maximise number of kaons of given energy
(10% momentum bite) that enter a beamline 
with 20 mrad angular acceptance 

Last version of the beamline: 
Graphite target, L = 70 cm, R = 3 cm 

Inconel target (L = 50 cm, R = 3 cm) 
is also being considered

26

Graphite target radius scan

instrumented
decay region



● More π and K in the wanted momentum range: higher yields at the decay tunnel = more ν
e
/POT

● Pile-up problems in the decay tunnel
● Needs dedicated pulsed-slow extraction method developed in collaboration with CERN

● “burst mode slow extraction” achieved at the SPS

● Genetic Algorithm used to design a satisfactory horn geometry
● FoM is number of collimated K+ with momentum ~8.5 GeV/c
● Factor x3 higher than the static case reached at first quadrupole

● First candidate designs reached:
● MiniBooNE-type geometry with INCONEL 

target: HW constraints fullfilled
● The good standalone FoM of x3 does not 

match full baseline beamline:
● development of dedicated horn-version 

of ENUBET beamline in progress
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Horn studies



 Multi Momentum beamline
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Neutrinos from reference beamline are peaked ~4 GeV 
(DUNE R.o.I, Region of Interest).

New beamline design: secondary multi momentum (4, 6, 8.5 GeV) 
→ cover full range of interest (including the low-energy region,
T2K/HyperK R.o.I.)

Optics optimization: TRANSPORT, G4beamline.

Contains detailed description of existing magnetic elements

First estimates of kaon fluxes and background are ongoing.

G4beamline

Dipole

Quadrupole triplet

Quadrupole triplet

Single focusing
quadrupole

Dipole

Target 

Collimator 
and W foil

Total bending: 
13.35° 28

4 GeV

DUNE ROI

T2K/HK ROI
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Positron reconstruction
Full GEANT4 simulation of the detector, validated by prototype tests at 
CERN during 2016-2018.

● particle propagation and decay from transfer line to detector

● hit level detector response

● pile-up effects included

Analysis chain: 

● Event builder → identify the seed of the event (LCM with largest 
energy deposit in inner layer and of E>28 MeV). Cluster neighbour 
LCM deposits compatible with propagation of shower

● e/π/μ separation → multivariate analysis exploiting 19 variables 
(energy pattern deposition in calorimeter, event topology, and 
photon-veto energy deposition)

● e/γ separation → signal on the tiles of the photon veto (0-1-2 mip)

S/N = 2

Efficiency: 22% (dominated by geometrical efficiency)

Visible energy



Muon neutrinos  
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High-Energy: K+ → μ+ ν
μ
, K+ → π0 μ+ ν

μ
→ constrained by the tagger

Low-Energy: π+ → μ+ ν
μ

→ constrained by detctors following the hadron dump

tagger

K+ → μ+ ν
μ
 Efficiency = 35% S/N = 6.1

K+ → π0 μ+ ν
μ
 Efficiency = 21% S/N = 6.1

● Event builder → identify seed of the event (inner layer LCM withm E = 
5-15 MeV).  Cluster  all  LCM  deposits  compatible  with  muon-track 
topology and propagation

● μ-like background separation → multivariate analysis exploiting 13 
variables (energy deposition, track isolation and topology)

π+ → μ+ ν
μ

Muon  stations  after  hadron  dump:  pions  have  a  large  forward 
boost, muons from decays exit the tunnel.

Estimation of muon and neutron rates in progress → choice of detector 
technology

Absorber
μ-station
(detector)

Tagger impact point



New design from G4beamline (feat. new proton target) → suppression of low energy ν
e
 from target region

Further reduction of background: optimization and final design of collimators and absobers at the end of 
the transfer line (position, dimension and apertures) in progress with GEANT4

→ New genetic algorithm implemented to sample the parameter space

● Convergence in O(100) iterations

● Figure Of Merit = ratio K+
entering tagger

 / background
hitting tunnel

  (bkg = e+-, π+-)

Figure Of Merit = signal/background to be maximized

GEANT4 - beamline optimization
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GEANT4

e+ e-
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Plug + collimator optimization

Scan of parameter space with FOM value in colour scale
Convergence indicator

Convergence in 
~100 iteration



Cdy

R2R1DZ

Cdx

Evolution of FOM distribution: collimator before quad

Evolution of FOM distribution: tungsten plug

Plug + collimator optimization

Evolution of best 
optimization 
parameters
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