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This talk reports on analysis of all available  H, D,  Carbon and Oxygen
electron scattering   data (Analysis will be expanded to all nuclei) 

• We update the Bosted-Christy fit to all of  the world’s electron scattering data  on 
H, D and nuclear targets to include the  lowest values of energy transfer n and q2

(for carbon we fit about 8000 cross section measurements and 250 measurements 
for Oxygen). We fit the QE cross section (including Transverse Enhancement/MEC, 
+longitudinal low q suppression) resonance and pion production, DIS, nuclear 
excitations, elastic scattering data.   Note: Nuclear excitations are significant at low  
n and contribute up to  30% to the longitudinal Inelastic  Coulomb Sum Rule (CSR)

• Since the cross sections span a large range of energies and scattering angles, we 
extract both the longitudinal RL  and transverse RT contributions.

• We parameterize  both the Enhancement of the Transverse QE cross section and 
the Suppression of the Longitudinal QE cross section. We extract the most precise  
Coulomb Sum rule as a function of q and compare to theoretical calculations.  

•
• The fit can be used in lieu of data to benchmark Monte Carlo predictions (e.g. for 

e-H, e-D  and e-12C  and e-1O cross sections, and to is being used compute radiative 
corrections for  electron scattering experiments..
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Nuclear excitations in Carbon 
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We parameterize form-factors for elastic scattering and  for 17  longitudinal 
and transverse nuclear excitation  (2< Excitation Energy<50 MeV) important 
since they contribution up to 30% to the Coulomb Sum Rule
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Examples: Squares of  Elastic 
form factor and the form 
factors for the first 3 nuclear 
excitation (all are longitudinal)
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Nuclear excitation region
Ex < 50 MeV

Comparison of our fit to 
representative  e-C12 data for 
0.01<q2< 0.08 GeV2 .

Shown: Total including 
excitations : solid -------

Quasielastic (QE) 
contribution:     dashed------

Transverse Enhancement at 
large angles accounts for 
Meson Exchange Currents and 
Enhancement of TTransverse
QE response   dashed------

Cross sections for 
excitations less than 10 
MeV multiplied by (1/6)

Electron scattering cross sections
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Coulomb Sum rule: Contribution of nuclear excitations

At very low q,      SLinelastic = 0

At high q  expect  SLinelastic = 1
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Modeling QE:
Use superscaling- Fit for the longitudinal scaling function 
parameters in the overall fit

We include Rosenfelder Pauli suppression
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Quasielastic (QE) Region-I

Comparison of our fit to 
representative  e-C12 data 
For n < 0.2 GeV and
0.01 <q2< 0.068 GeV2 .

Shown: Total including 
excitations   solid -------

Quasielastic (QE)
contribution     dashed ------

Transverse Enhancement at 
large angles accounts for 
Meson Exchange Currents 
and Enhancement of 
Transverse QE response    
dashed------
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Quasielastic (QE) Region II

Comparison of our fit to 
representative  e-C12 data 
for  < 0.2 GeV  and
0.071 <q2< 0.121 GeV2 .

Shown: Total including 
excitations      solid -------

Quasielastic (QE)
contribution     dashed ------

Transverse Enhancement at 
large angles accounts for 
Meson Exchange Currents 
and Enhancement of 
Transverse QE reponse
dashed------



10

The overall fit provides RL and RT at all values of q
Shown are  large and small angle cross sections at the same q that provide the 
major contribution to the extraction of RL and RT at 

q2=0.09, 0.15 and 0.35 GeV2 (q=0.3, 0.38 and 0.57 GeV)
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Comparison of our RL and RT from our universal fit to (~8000 cross sections) to previous 
extraction by Jourdan at q2=0.09, 0.15 and 0.35 GeV2. (q=0.3, 0.38 and 0.57 GeV)
Our extraction is more reliable since we include all of the world’s data in the fit
• At low q  the contribution of the  nuclear excitations important.
• The superscaling fit function describes the QE distribution at higher n.
• Resonance region is modeled with Fermi Smeared  H and D data.
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Pauli Suppression
Factor. We use the 
Rosenfelder method. 
P1= Pauli factor for the 
Christy 2021 QE 
superscaling model.
P2 = Pauli factor for 
another QE model
(e.g. Amaro-2020)

ES1 =The Extra 
Suppression of the 
longitudinal QE cross 
section (in addition to 
Pauli) extracted from 
the fit 

ES2 = Extra 
Suppression for  
another QE  model
ES2= ES1 (P1/P2)

Extra Suppression factor 
of the  Longitudinal QE 
extracted from the fit

Pauli suppression Factor

12C
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The different contribution from our fit to  the extracted 
Inelastic Coulomb sum Rule: SLinelastic(q)

Pauli

SLinelastic(q)
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Comparison to theory for
Coulomb sum Rule: SLinelastic(q) 12C
1. Reasonable  agreement with 
Lavato 2016 First Principle Green’s 
function MC.
2. Poor agreement with Mihaila 2010 
Coupled Cluster AVI8-UIX potential
3. Poor agreement with Cloet 2016 
(RPA)

SLinelastic(q)

Comparison to theory for
Coulomb sum Rule: SLinelastic(q) 16O
1. Reasonable  agreement with 
Sobczyk 2000 CCSD:NNLO

2, Poor agreement with Mihaila 2010 
Coupled Cluster AVI8-UIX potential



Conclusions
• We fit all existing  e-H, e-D, e- 12C and  e-16O  data including 

elastic, nuclear excitations,  Quasielastic, Resonance and 
Inelastic region. 

• Fit provides a benchmark to test electron and neutrino MC 
generators. (all parameters will  be published).

• The contributions of nuclear excitations is important at low q 
and should be added to  electron and neutrino MC generators.

• For the QE Longitudinal structure function, we find that the QE 
cross section is suppressed by an Extra Suppression in addition 
to Pauli blocking. We  provide a parameterization of the Extra 
Suppression.

• We extract the inelastic Coulomb sum rule and compare to 
theoretical calculations.  Since all available e- 12C data is included 
in the fit, this is the best extraction of the Inelastic Coulomb 
Sum Rule from all the world’s data on 12C .
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