Investigation of the MicroBooNE inclusive neutrino cross sections on argon

Marco Martini

Based on: M. Martini, M. Ericson, G. Chanfray, Phys. Rev. C 106, 015503 (2022)

Plan

- Brief review of our theoretical model
- Rapid review of our results for neutrino-carbon cross sections
- Investigation of the MicroBooNE inclusive $d^2\sigma/dp_\mu dcos\theta$, $\sigma(E_\nu)$, $d\sigma/dE_\mu$ and $d\sigma/d\omega$ on argon
- Summary

Brief review of our theoretical model

$$\mathcal{L}_W = \frac{G_F}{\sqrt{2}} \cos \theta_C l_\mu J^\mu$$

Neutrino-nucleus cross section

$$\frac{d^2\sigma}{d\Omega_{k'}d\omega} = \frac{G_F^2 \cos^2 \theta_C}{4\pi^2} \frac{|\mathbf{k'}|}{|\mathbf{k}|} L_{\mu\nu} W^{\mu\nu}(\mathbf{q}, \omega)$$

$$L_{\mu\nu} = \mathbf{k}_{\mu}\mathbf{k}_{\nu}' + \mathbf{k}_{\mu}'\mathbf{k}_{\nu} - \mathbf{g}_{\mu\nu}\mathbf{k} \cdot \mathbf{k}' \pm i\varepsilon_{\mu\nu\kappa\lambda}\mathbf{k}^{\kappa}\mathbf{k}'^{\lambda} \qquad W^{\mu\nu} = \sum_{f} \langle 0|J^{\mu\dagger}(q)|f\rangle\langle f|J^{\nu}(q)|0\rangle\delta^{(4)}(p_{0}+q-p_{f})$$

 Leptonic tensor

The cross section in terms of the response functions $R(q,\omega)$:

$$\frac{d^2\sigma}{d\cos\theta d\omega} = \frac{G_F^2 \cos^2\theta_c}{\pi} |\mathbf{k}'| E_l' \cos^2\frac{\theta}{2} \left[\frac{(\mathbf{q}^2 - \omega^2)^2}{\mathbf{q}^4} \underline{G_E^2} (R_{\tau}(\mathbf{q}, \omega)) + \frac{\omega^2}{\mathbf{q}^2} \underline{G_A^2} (R_{\sigma\tau(L)}(\mathbf{q}, \omega)) \right]$$

$$+ 2 \left(\tan^2\frac{\theta}{2} + \frac{\mathbf{q}^2 - \omega^2}{2\mathbf{q}^2} \right) \left(\underline{G_M^2 \frac{\mathbf{q}^2}{4M_N^2}} + \underline{G_A^2} \right) (R_{\sigma\tau(T)}(\mathbf{q}, \omega) \pm 2 \frac{E_{\nu} + E_l'}{M_N} \tan^2\frac{\theta}{2} \underline{G_A G_M} (R_{\sigma\tau(T)}(\mathbf{q}, \omega)) \right]$$

Nucleon properties \rightarrow Form factors: Electric G_E , Magnetic G_M , Axial G_A

Nuclear dynamics \to Nuclear Response Functions $R(q,\omega) \leftrightarrow$ Nuclear Matrix elements Isovector $R_{\tau}(\tau)$; Isospin Spin-Longitudinal $R_{\sigma\tau(L)}(\tau \sigma \cdot q)$; Isospin Spin Transverse $R_{\sigma\tau(T)}(\tau \sigma \cdot q)$

Our theoretical model for Nuclear Response Functions

$$R_{\alpha} = \sum_{n \neq 0} |\langle n | \hat{O}_{(\alpha)} | 0 \rangle|^2 \, \delta[\omega - (E_n - E_0)] \qquad \qquad R(\omega, q) = -\frac{\mathcal{V}}{\pi} \text{Im}[\Pi(\omega, q, q)]$$

1p-1h Quasielastic

1p-1h $(\Delta \rightarrow \pi N)$ 1 π production

2p-2h: two examples

NN SRC

5

Unified description of several channels

Bare responses in semi-classical approximation – local Fermi gas

$$\Pi^{0}(\omega,\boldsymbol{q},\boldsymbol{q}') = \int d\boldsymbol{r} e^{-i(\boldsymbol{q}-\boldsymbol{q}')\cdot\boldsymbol{r}} \Pi^{0}\left[\omega,\frac{1}{2}(\boldsymbol{q}+\boldsymbol{q}'),r\right]$$

$$\Pi^0\left(\omega, \frac{\boldsymbol{q}+\boldsymbol{q}'}{2}, \boldsymbol{r}\right) = \Pi^0_{k_F(r)}\left(\omega, \frac{\boldsymbol{q}+\boldsymbol{q}'}{2}\right)$$

Local Density Approximation (LDA)

$$k_F(r) = [3/2 \ \pi^2 \rho(r)]^{1/3}$$

Density profiles taken from experimental nuclear charge density distribution

Several partial components

- QE (1 nucleon knock-out)
- Pion production
- Multinucleon excitation

Switching on the interaction: random phase approximation (RPA)

- External force acting on one nucleon is transmitted to the neighbors via the interaction
- The nuclear response becomes collective

$$\Pi = \Pi^{0} + \Pi^{0} V \Pi$$

$$Im\Pi = |\Pi|^{2} ImV + |1 + \Pi V|^{2} Im\Pi^{0}$$

 $\Pi^0 = \sum_{k=1}^{N_k} \Pi^0_{(k)}$

exclusive channels:

QE, 2p-2h, $\Delta \rightarrow \pi N$...

coherent π production

Several partial components treated in self-consistent and coupled way

Examples of RPA nuclear responses

Isospin Spin Transverse $R_{\sigma\tau(T)}$

Isospin Spin Longitudinal $R_{\sigma\tau(T)}$ coherent

Testing our responses in other processes

Rapid Review of our results related to neutrino cross sections on carbon

First explanation of the MiniBooNE CCQE-like cross section and M_△ puzzle

CCQE-like = Genuine CCQE + np-nh

W+ absorbed by a pair of nucleons

M. Martini, M. Ericson, G. Chanfray, J. Marteau, Phys. Rev. C 80 065501 (2009)

Agreement with MiniBooNE without increasing M_A

Starting from this result the 2p-2h attracted a lot of interest in the neutrino community

MiniBooNE CCQE-like flux-integrated double differential cross section

$$\frac{d^2\sigma}{dE_{\mu}d\cos\theta} = \int dE_{\nu} \left[\frac{d^2\sigma}{d\omega d\cos\theta} \right]_{\omega = E_{\nu} - E_{\mu}} \Phi(E_{\nu}) \qquad \mathbf{V}$$

• Less model dependent than $\sigma(E_{\nu})$

MiniBooNE, Phys. Rev. D 81, 092005 (2010)

• Flux dependent

Good agreement with data without increasing M_A once np-nh is included

MiniBooNE CCQE-like flux-integrated double differential cross section

Martini, Ericson, Phys. Rev. C 87 065501 (2013)

Similar agreement also for antineutrino scattering

The T2K $d^2\sigma$ CCO π measurement on ¹²C

$CCO\pi$ = CCQE-like without subtraction of π absorption background

In the last years it has become more popular to present the data in terms of final state particles (e.g. 1μ , 0π)

Also in this case our model including np-nh is compatible with data

Some comparisons between models and T2K $CC0\pi$ data

A. Branca et al. Symmetry 13 (2021) 9, 1625

- Several theoretical calculations agree on the crucial role of 2p-2h but there are differences on the results obtained for this channel
- The different models including 2p-2h are compatible with data at present level of experimental accuracy

T2K, Phys. Rev. D 101 112001 (2020)

1π production channel

MiniBooNE flux-integrated CC1 π + d² σ in terms of μ variables

The general agreement between our evaluation and the data is good

T2K flux-integrated CC inclusive differential cross sections on carbon

 V_{e}

M. Martini et al., Phys. Rev. C 94 015501 (2016)

QE + np-nh + 1π incoherent + 1π coherent = agreement with T2K inclusive

T2K ν_{μ} CC inclusive data with increased angular acceptance and higher statistics

Remarkable agreement in all the analyzed bins; small deviations for $\cos\theta$ >0.92 and p_u >1.5 GeV

4/8/2022 M. Martini, NuFact2022 18

Results for argon – Comparison with MicroBooNe CC inclusive

From ¹²C to ⁴⁰Ar results passing through ⁴⁰Ca calculations

To keep our description close the one on ¹²C, we perform the LFG+RPA calculations of nuclear responses by approximating the proton and neutron density profiles of ⁴⁰Ar by the proton density profile of ⁴⁰Ca

M. B. Barbaro et al. , Phys. Rev. C 98 035501 (2018)

Symmetric .vs. Asymmetric RFG calculations

small effects for v CCQE transverse response

It may justify our approximation to calculate the responses for the symmetric ⁴⁰Ca

Our approximation for the CC inclusive v-40Ar cross section calculation

- QE rescaled according to the number of active nucleons (neutrons) $QE^{Ar} \sigma = \frac{22}{20} QE^{Ca} \sigma$
- No rescaling for 1π production since both p and n are active $\frac{Ar}{1\pi}\sigma = \frac{Ca}{1\pi}\sigma$
- 2p-2h and 3p-3h $\Delta\Delta$ calculated for ⁴⁰Ca

$$^{Ar}_{\Delta\Delta}\sigma = ^{Ca}_{\Delta\Delta}\sigma$$
Endence) $^{Ar}_{NN}\sigma = \frac{40}{100} ^{C}_{NN}\sigma ^{Ar}_{N\Delta}\sigma = \frac{40}{100} ^{C}_{N\Delta}$

2p-2h NN and N Δ by rescaling the ¹²C results (linear A-dependence) $\frac{\Delta\Delta}{NN}\sigma = \frac{40}{12}\frac{C}{NN}\sigma = \frac{40}{12}\frac{C}{N\Delta}\sigma$

Quasi-deuteronic 2p-2h contribution $\sim \rho_p \rho_n$

$$\rho_p \rho_n = \frac{Z}{V} \frac{N}{V} = \frac{18}{V} \frac{22}{V} = \frac{20-2}{V} \frac{20+2}{V} = \frac{400-4}{V^2} \implies \text{ 1% difference between 40Ar and 40Ca}$$

First MicroBooNE measurement: inclusive $d^2\sigma/dp_\mu dcos\theta_\mu$

PHYSICAL REVIEW LETTERS 123, 131801 (2019)

Our calculations of MicroBooNE flux-integrated inclusive d²σ on argon

- The overall agreement is reasonable, though not as good as in the ¹²C T2K inclusive case
- A disagreement shows up for low p_u

SuSA and SuSAv2 calculations display a similar trend

At backward angles the predictions of the different models are slightly shifted to lower values of p_{μ} , whereas the reverse occurs at forward angles

Recent energy-dependent MicroBooNE cross sections measurements

PHYSICAL REVIEW LETTERS 128, 151801 (2022)

First Measurement of Energy-Dependent Inclusive Muon Neutrino Charged-Current Cross Sections on Argon with the MicroBooNE Detector

Experimental results presented for the first time as a function of true neutrino energy E_{ν} and transferred energy (v or ω)

This has been made possible by a new procedure (based on the comparison between the data and the Monte Carlo predictions constrained on the lepton kinematics) allowing the mapping between the true E_{ν} and ω on one hand, and the reconstructed neutrino energy E_{ν}^{rec} and hadronic energy E_{had}^{rec} on the other hand

Inclusive total cross section as a function of the neutrino energy

- Good agreement up to E_v ≈ 0.7 GeV
- This is not the case of other models (GENIE v3, MicroBooNE MC, NEUT and NuWro) which underestimate the data
- A possible reason is that GENIEv3, MicroBooNE MC, NEUT and NuWro implement np-nh contribution deduced by Nieves et al. which is smaller than our by about a factor 2
- Beyond $E_v = 0.7$ GeV our evaluation as well underestimates the data

M. Martini, NuFact2022

Comparison between argon (MicroBooNE) and carbon (SciBooNE) $\sigma(E_{\nu})$

Argon - MicroBooNE

M. Martini, M. Ericson, G. Chanfray, Phys. Rev. C 106, 015503 (2022) 1.4 **QE RPA** np-nh 1.2 1π incoherent 1.0 1π coherent (10^{-38} cm^2) Total RPA 0.8 QE bare Total bare 0.6 MicroBooNE **b** 0.4 0.2 0.0 -0.2 0.4 0.6 0.8 1.0 0.0 1.2 E_{ν} (GeV)

Carbon - SciBooNE

- Similar behavior
- Good agreement up to E_v ≈ 0.7 GeV
- Underestimation of the data for E_v > 0.7 GeV
- This underestimation is due to inelastic channels missing in our description such as 2π production

MicroBooNE flux-averaged differential cross sections dσ/dE_u

- Lack of strength. It appears in the same muon kinematical region as the one of $d^2\sigma/dp_udcos\theta$ previously shown
- Also the other models underestimate the data

More quantitative analysis by applying an additional smearing (result of regularization in the data unfolding) and by calculating the $\chi 2$ (smearing and covariant matrices shared by MicroBooNE):

- The effect of the smearing is small
- χ2\ndf=27.9/11. Larger than the one of most of the other models. Probably due to the absence in our model of inelastic channels $(2\pi,...,DIS)$ included in the Monte Carlo

M. Martini, M. Ericson, G. Chanfray, Phys. Rev. C 106, 015503 (2022)

MicroBooNE flux-averaged differential cross sections dσ/dω

A new type of measurement for neutrinos

The cross section function of the transferred energy allows a better separation of the different channels

- At low energy transfer the cross section is dominated by the quasielastic channel which is quenched by RPA effects in our theoretical calculations
- A lack of strength shows up for $0.2 < \omega < 0.6$ GeV but the additional smearing should be applied to our curves before drawing any conclusions

$d\sigma/d\omega$ before and after the additional smearing

- The impact of the smearing is larger for $d\sigma/d\omega$ than for the $d\sigma/dE_{\mu}$
- The smearing reduces the difference between the results with and without RPA
- The smearing produces a redistribution of the strength which is more important when the cross section is peaked, such as the quasielastic or the pion production

Quantitative analysis of $d\sigma/d\omega$

- Our model including RPA effects: χ2/ndf = 17.2/8
- Our χ2 comparable with the one of GiBUU and better than all the Monte Carlo predictions
- A possible reason is that GENIEv3, MicroBooNE MC, NEUT and NuWro implement np-nh contribution deduced by Nieves et al. which is smaller than our by about a factor 2 for neutrinos

Impact of missing inelastic channels

M. Martini, M. Ericson, G. Chanfray, Phys. Rev. C 106, 015503 (2022)

- It may signal the absence in our description of 2π production and other inelastic channels
- This absence could explain the underestimation of the inclusive MicroBooNE $d^2\sigma$ at low p_u (previously shown)
- This underestimation does not appear for the inclusive T2K $d^2\sigma$ data (previously shown)
- The reason of this difference is related to the different neutrino energy profiles of MicroBooNE and T2K, the MicroBooNE one having a larger high energy contribution
- 2π production and other inelastic contributions are more relevant for MicroBooNE than for T2K

Investigation of the MicroBooNE inclusive neutrino cross sections on Ar

Summary

- We have compared the MicroBooNE inclusive $d^2\sigma/dp_\mu dcos\theta$, $\sigma(E_\nu)$, $d\sigma/dE_\mu$ and $d\sigma/d\omega$ to our theoretical approach
- Overall we find an agreement with the data, in spite of a tendency of underestimation in some specific regions
- Our model is particularly efficient in the case of the $d\sigma/d\omega$ data, a new type of measurement
- These data allow a better separation of the different reaction channels, even after the additional smearing needed for comparing models and data
- The low ω region is dominated by the quasielastic. At larger ω our predictions underestimate the data
- The two pions production and other inelastic contributions which are not taken into account in our description are the natural candidates to explain this underestimation
- These channels are more relevant for MicroBooNE than for T2K, due to the different energy profiles of these neutrino beams

BACKUP

Smearing Matrices

Covariant Matrices

$$\sigma_{smeared} = M_{add_smr} \times \sigma_{model}$$

$$\chi^{2} = \left(M - P\right)^{T} \times Cov_{full}^{-1}\left(M, P\right) \times \left(M - P\right)$$

 $d\sigma/dE_{\mu}$

 $d\sigma/d\omega$

Inclusive CC cross section on Carbon

SciBooNE, Phys. Rev. D. 83, 012005 (2011)

M. Martini, M. Ericson, Phys. Rev. C 90 025501 (2014)

J. Nieves, I. Ruiz Simo, M.J. Vicente Vacas Phys. Rev. C 83 045501 (2011)