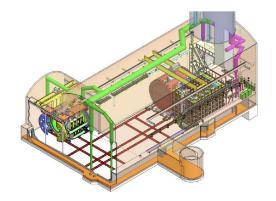
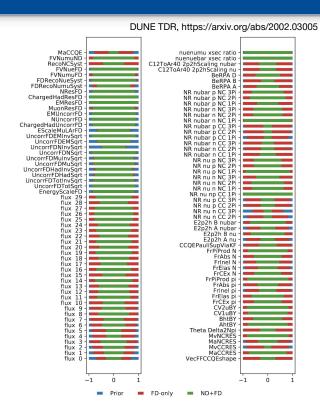


Electro-nuclear scattering measurements for neutrinos with LDMX

Wes Ketchum (Fermilab) for LDMX collaboration

23rd International Workshop for Neutrinos from Accelerators (NuFact)


2 August 2022


Neutrino systematic uncertainties

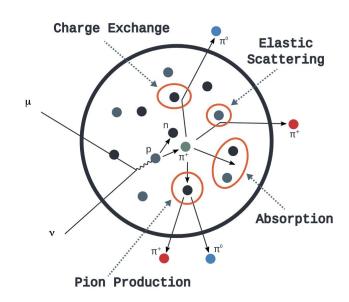
Neutrino oscillation (and other!) measurements require careful control of systematic uncertainties

Typically use a near detector to constrain flux and interaction uncertainties in far detectors

Can be complex: e.g. DUNE-PRISM allows scanning across beam axis to match FD with combination of ND fluxes

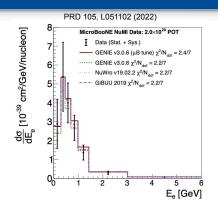
Interaction uncertainties

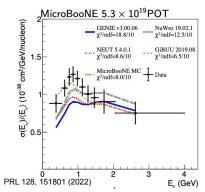
Neutrino interaction modeling on nuclei in GeV range difficult


Must consider wide range of interactions (from QE to DIS)

Translation of observed final state to initial neutrino energy very difficult

Reconstruction of full final state (e.g. neutrons) very difficult


Modeling uncertainties in observable final state observable (e.g. FSI)


https://arxiv.org/abs/1706.03621

Constraining interaction uncertainties for DUNE

Limited (but growing!) neutrino data on Argon

Future experiments like SBN will continue adding

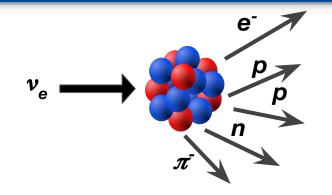
DUNE near detectors will provide strong constraints

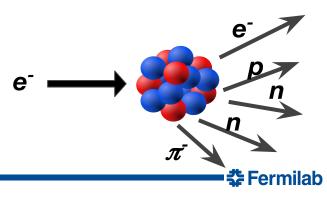
Requires 'More Capable Near Detector' to reach full $\delta_{\rm CP}$ sensitivity

Complex fit including flux and detector systematics

(Not to mention: possible that NDs may see new physics of their own!)

Electron scattering analog


Charged lepton interactions are an important external constraint on neutrino interactions


Much of the same physics

Many identical nuclear effects

High-statistics datasets

Initial lepton kinematics are known → allows tests of initial lepton reconstruction

Electron scattering experiments

Collaborations	Kinematics	Targets	Scattering	
E12-14-012 (JLab)	$E_e=$ 2.222 GeV	Ar, Ti	(e,e')	
(Data collected: 2017)	$15.5^{\circ} \le \theta_e \le 21.5^{\circ}$	AI, C	e,p	
	$-50.0^{\circ} \le \theta_p \le -39.0^{\circ}$		in the final state	
e4nu/CLAS (JLab)	$E_e=$ 1, 2, 4, 6 GeV	H, D, He,	(e,e')	
(Data collected: 1999, 2022)	$ heta_e > 5^\circ$	C, Ar, 40 Ca,		
		48 Ca, Fe, Sn	in the final state	
LDMX (SLAC)	$E_e=$ 4.0, 8.0 GeV		(e,e')	
(Planned)	$\theta_e < 40^\circ$	W, Ti, Al	e,p,n,π,γ	
			in the final state	
A1 (MAMI)	50 MeV $\leq E_e \leq 1.5$ GeV	H, D, He	(e,e')	
(Data collected: 2020)	$7^{\circ} \le \theta_e \le 160^{\circ}$	C, O, Al	2 additional	
(More data planned)		Ca, Ar, Xe	charged particles	
A1 (eALBA)	$E_e=$ 500 MeV	C, CH	(e,e')	
(Planned)	- few GeV	Be, Ca	500 5	

Range of existing and planned electron-scattering datasets

Variety of targets and energies

Detectors with varying capabilities

See Snowmass white paper: https://arxiv.org/abs/2203.06853

Electron scattering experiments

Collaborations	Kinematics	Targets	Scattering	
E12-14-012 (JLab)	$E_e=$ 2.222 GeV	Ar, Ti	(e,e')	
(Data collected: 2017)	$15.5^{\circ} \le \theta_e \le 21.5^{\circ}$	AI, C	e,p	
	$-50.0^{\circ} \le \theta_p \le -39.0^{\circ}$		in the final state	
e4nu/CLAS (JLab)	$E_e=$ 1, 2, 4, 6 GeV	H, D, He,	(e,e')	
(Data collected: 1999, 2022)	$ heta_e > 5^\circ$	C, Ar, ¹⁰ Ca,	$\gamma, n, n, \pi, \gamma$	
		48 Ca, Fe, Sn	in the final state	
LDMX (SLAC)	$E_e=$ 4.0, 8.0 GeV		(e,e')	
(Planned)	$ heta_e < 40^\circ$	W, Ti, Al	e,p,n,π,γ	
			in the final state	
A1 (MAMI)	50 MeV $< E_e < 1.5$ GeV	H. D. He	(e,e')	
(Data collected: 2020)	$7^{\circ} \le \theta_e \le 160^{\circ}$	C, O, Al	2 additional	
(More data planned)		Ca, Ar, Xe	charged particles	
A1 (eALBA)	$E_e=$ 500 MeV	C, CH	(e,e')	
(Planned)	- few GeV	Be, Ca		

Range of existing and planned electron-scattering datasets

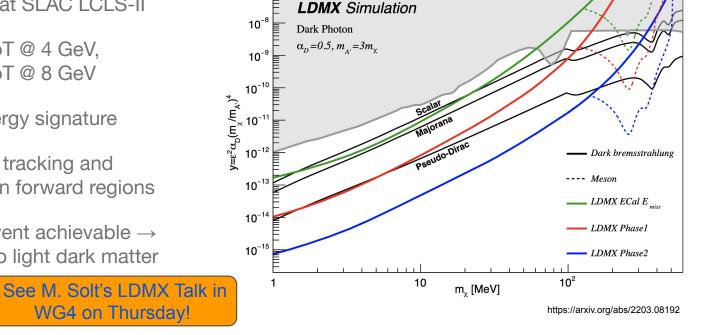
Variety of targets and energies

Detectors with varying capabilities

See Snowmass white paper: https://arxiv.org/abs/2203.06853

Light Dark Matter experiment

Search for light dark matter in electron fixed-target experiment at SLAC LCLS-II


> Phase 1: ~4e14 EoT @ 4 GeV. Phase 2: ~1e16 EoT @ 8 GeV

Missing momentum/energy signature

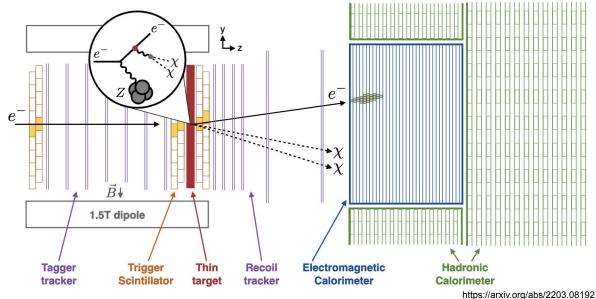
Requires excellent tracking and particle detection in forward regions

< 1 background event achievable → strong sensitivity to light dark matter Candidates

Expecting data 2026

WG4 on Thursday!

LDMX Detector

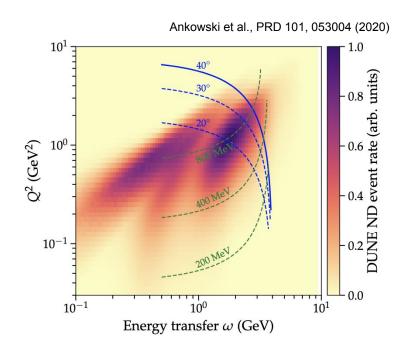

Thin W target (with additional targets e.g. Ti being considered)

Si-strip tagger and recoil electron trackers $\rightarrow p > 50$ MeV sensitivity

High-granularity Si-W ECAL

Fast response → TS+ECAL form trigger

~17 λ_1 sampling HCAL


eN Scattering in LDMX

Electro-nuclear scattering in LDMX matches well with phase-space for DUNE

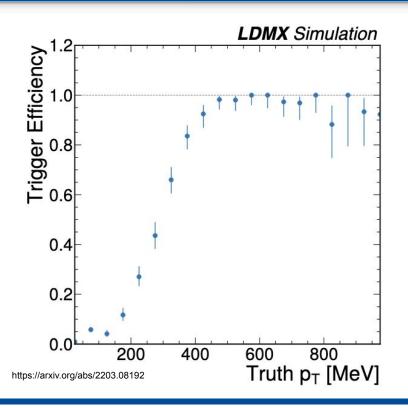
Consider 4 GeV electrons on Ti target

blue lines: constant recoil electron angle in LDMX

green lines: constant recoil electron p_{τ}

LDMX as part of an eN dataset for neutrinos

Kinematic reach well-matched to future DUNE oscillation program


Particularly in RES and DIS region

Excellent coverage and reconstruction for $\theta < 40^{\circ}$, including for neutral hadrons

→ allows a program of inclusive and exclusive measurements that complement existing/planned experiments

eN Trigger for LDMX

Nominal dark matter trigger insufficient for eN interactions

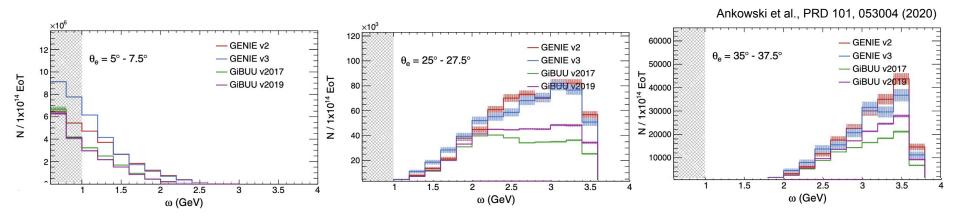
Requires large (>2.5 GeV) energy transfer

Newly developed high- p_T trigger algorithm

Fast reconstruction of energy and cluster position in ECAL

Correlate to electron position in trigger scintillator to determine p_T

Further studies to improve rejection of Bremsstrahlung photons

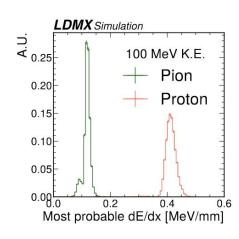


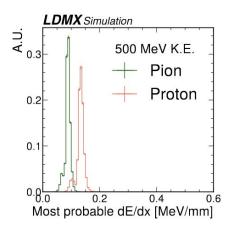
Inclusive Scattering Measurements

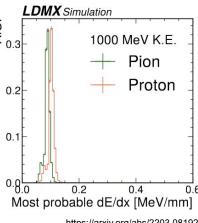
Can leverage excellent electron reconstruction and high statistics to make sensitive measurements in 2D/3D/... See studies in Ankowski et al., PRD 101, 053004 (2020)

Note: >200 MeV/c p_{τ} cut applied here

Detector coverage at lower angles, but will require lower- p_{τ} or alternate trigger


dE/dx measurements in tracker

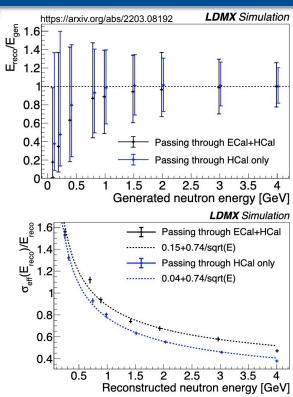

Separation of protons and charged pions critical for probing interaction models


E.g. QE vs. RES/DIS discrimination, particle multiplicities, FSI studies

Promising early studies of PID using dE/dx in tracker

With (very) simplified model of tracker response, good separation for KE < 500 MeV

https://arxiv.org/abs/2203.08192

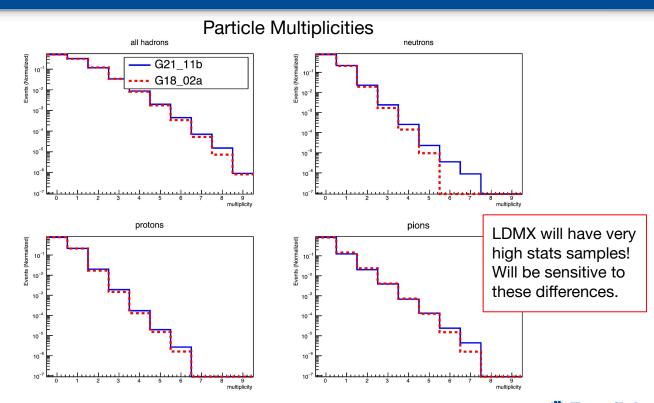

Neutron reconstruction

Primary goal of LDMX HCAL is to veto long-lived neutral hadrons

Effort underway on reconstruction of kinematics of neutrons

Consider both HCAL and ECAL+HCAL cases, sum energy across calorimeters

Further work ongoing for shower shape, angular reconstruction

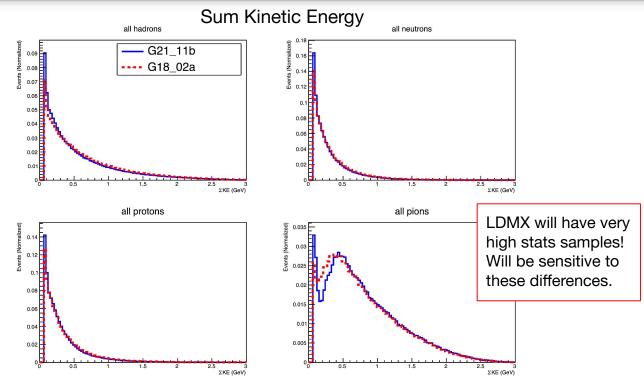


Simulation studies on observables

Through developments, check impact on simulation samples (two GENIE v3.2 tunes)

Apply lepton trigger cuts, and require final-state particles well-reconstructable $(\theta < 40^\circ)$

Still to-do: energy resolution smearing, PID efficiencies, etc.

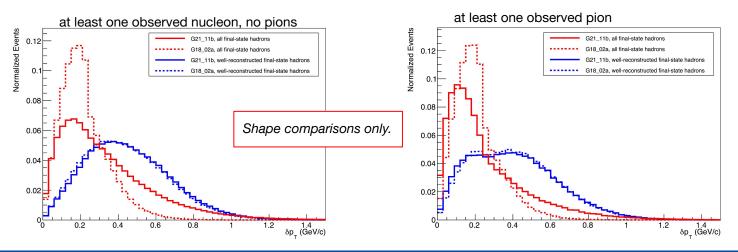


Simulation studies on observables

Through developments, check impact on simulation samples (two GENIE v3.2 tunes)

Apply lepton trigger cuts, and require final-state particles well-reconstructable $(\theta < 40^\circ)$

Still to-do: energy resolution smearing, PID efficiencies, etc.



Simulation studies on observables

Beginning to look at higher-level observables, e.g. momentum imbalance

Modeling effects of limited detector acceptance will be critical

Todo: explore ability to veto additional activity (rather than require good reconstruction) → DM detector well-designed for this!

Testbeam at CERN

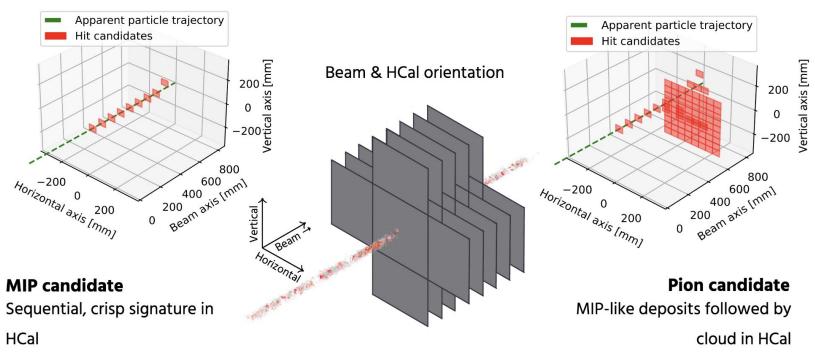
See H. Herde's talk at ICHEP for more details!

https://agenda.infn.it/event/28874/contributions/169115/

Testbeam run with trigger scintillator and HCAL prototypes earlier this year

Electrons, muons, pions, 500 MeV - 8 GeV

Trigger Scintillator



HCAL Scintillator Bars

HCAL response / PID

https://agenda.infn.it/event/28874/contributions/169115/

Future/ongoing studies

Continuing work on improving simulation and reconstruction

 π^0 acceptance, charged particle tracking, ECAL and HCAL clustering

Understand effects of limited "well-reconstructed" acceptance, ability to veto additional activity

Investigate model comparisons and impact for sensitivity to model parameters

Summary

Electron scattering measurements are an important external constraint on neutrino interaction uncertainties

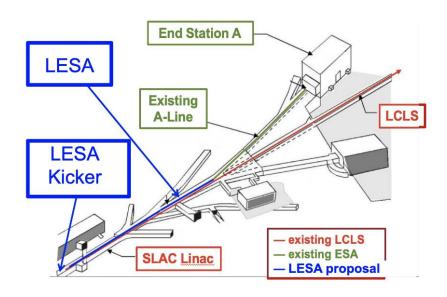
Proposed LDMX offers unique dataset for eN measurements particularly relevant to DUNE

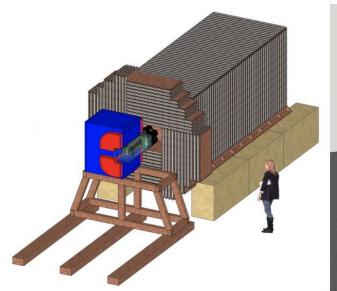
Leverage dark-matter design for sensitivity to forward particles, particularly neutrons

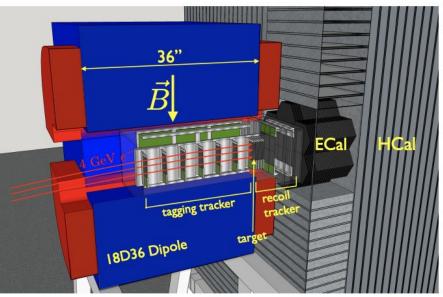
Design for feasible eN trigger ($p_{\tau} > 400 \text{ MeV/c}$) in place

Further work on reconstruction, PID, and event selection/observables ongoing

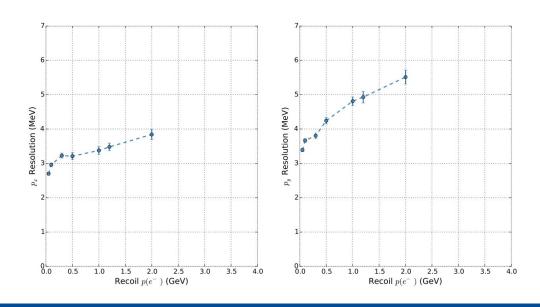
Thanks!



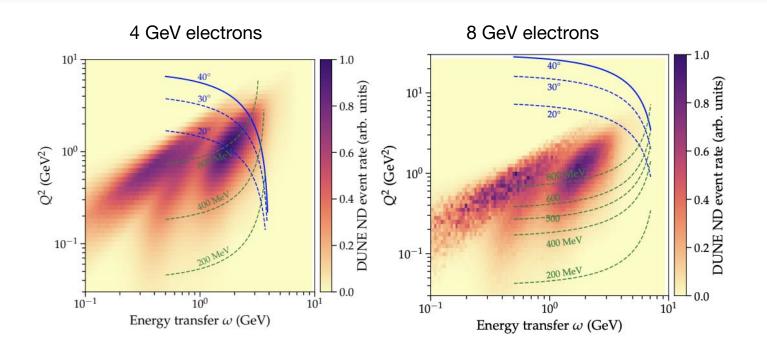



Backups

Beamline



Detector rendering



Recoil tracker resolution

Kinematic overlap with DUNE

GENIE Model Descriptions

Medium Energy GENIE Configurations (100 MeV- 100 GeV)							
Modelling CMC	Ground State	Quasi-elas tic	Meson Exchange Current	Resonance	Shallow and Deep Inelastic	Final State Interactions	
G18_02a	Relativistic Fermi Gas Model	Llewellyn- Smith QE model	Dytman	Berger-Sehgal	Bodek and Yang Model	hA18 (Effective intranuclear transport model)	
G21_11b	Local Fermi Gas Model	SuSAv2	SuSAv2	Berger-Sehgal	Bodek and Yang Model	hN18 (Full intranuclear cascade)	

