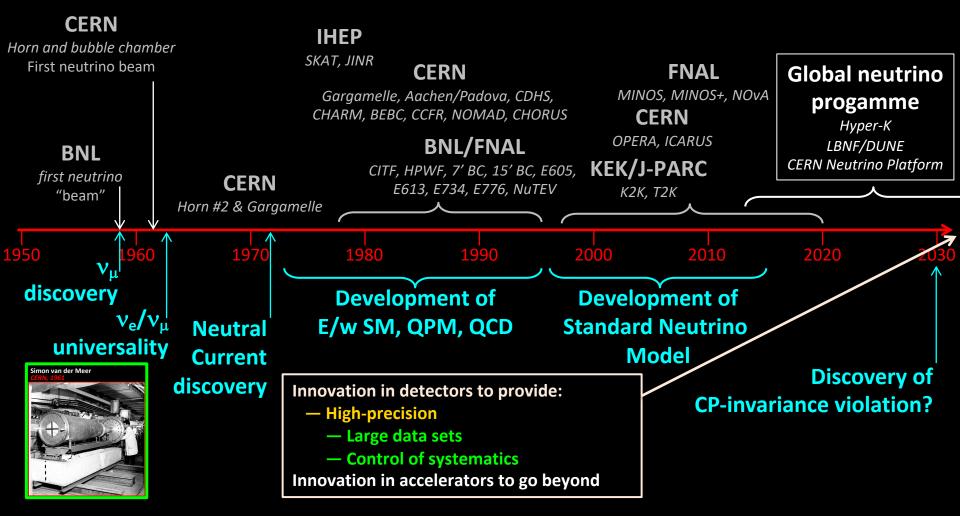
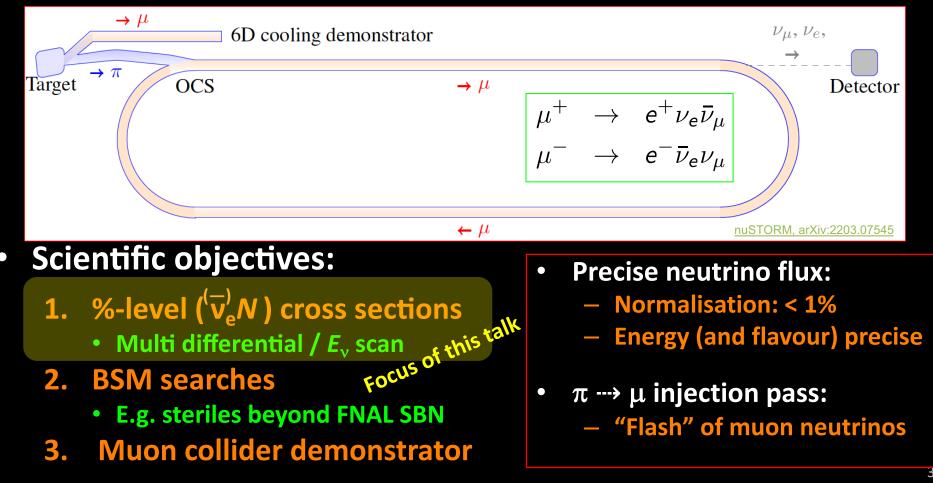
M. Scott on behalf of the nuSTORM collaboration 2 August, 2022


nuSTORM neutrinos from stored muons

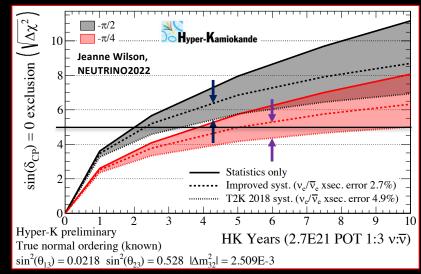
Salt Lake City, Utah, United States July 31st – Aug. 6th, 2022


The 23rd International Workshop on Neutrinos from Accelerators

Imperial College

London

Neutrinos from stored muons



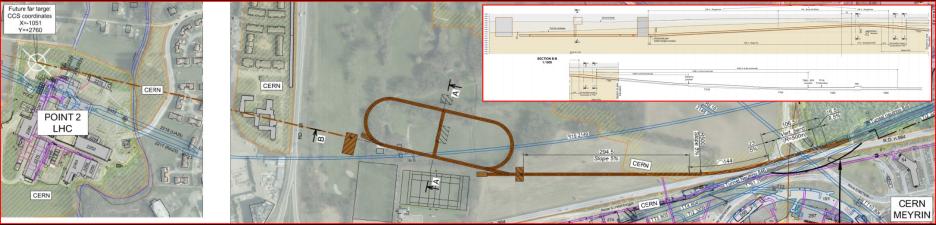
v_e/\overline{v}_e interactions for oscillations

- δ_{CP} requires ν_e and ν_e appearance
 Suppress ν_e and ν_e background in beams
- Need v_e / \overline{v}_e interaction data
- At 1st order precision:

- ν_{μ} -A + lepton universality constrains ν_e -A

- δ_{CP} requires requires 2nd order precision!
 Large data sets & better-understood fluxes
- High-specification detector:
 - Measure lepton & hadronic final state

Lepton mass correction Hadronic/nuclear response $E_{\nu}^{\text{tree-level}} = \frac{m_{\ell}^2 + Q^2}{2(E_{\ell} - p_{\ell} \cos \theta_{\ell})}$ Lepton observables \clubsuit QED radiative corrections and lepton mass "nudge"


QED radiative corrections and lepton mass "nudge Q², shifting internal (q₀, q₃) phase space

Strategic mid-term goal

	Innovative accelerator technology underpins the physics reach of high-energy and high- intensity colliders <u>The technologies under consideration include</u> high-field magnets, high-temperature superconductors, plasma wakefield acceleration and other high- gradient accelerating structures, <u>bright muon beams</u> , energy recovery linacs. The European particle physics community must intensify accelerator R&D and sustain it with adequate resources		
	High-priority future initiatives	To extract the most physics from DUNE and Hyper-Kamiokande, a <u>complementary</u> programme of experimentation to determine neutrino cross-sections and fluxes is required. Several experiments aimed at determining neutrino fluxes exist worldwide.	
	Opportunity	The possible implementation and impact of a facility to measure neutrino cross-sections at the percent level should continue to be studied.	
	Exploit synergies with ENUBET: Articulate the need	Other essential scientific activities for particle physics	
	Common requirement: Advanced neutrino detector	See Antonio Branca's talk this morning ENUBET: the first monitored neutrino beam	
Image: Stored Muons (nuSTORM) Goal: over next ~5 years, prepare for next ESPPU: Image: Stored Muons (nuSTORM) • Study and document the science case: Image: Stored Muons (nuSTORM) • Study and document the science case: Image: Stored Muons (nuSTORM) • Study and document the science case: Image: Stored Muons (nuSTORM) • Study and document the science case: Image: Stored Muons (nuSTORM) • Prepare "pre-CDR" as input to the Strategy Update			

Overview

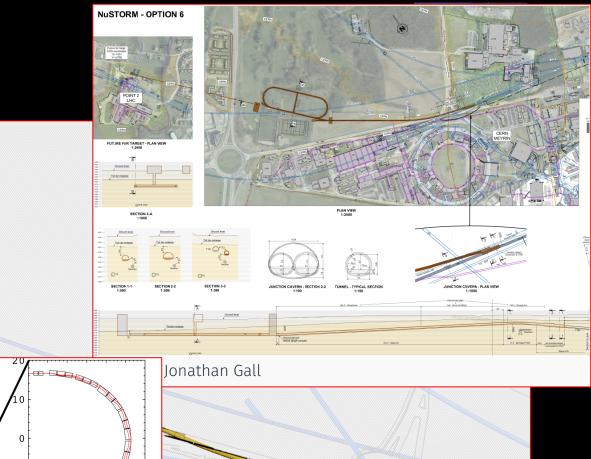
CERN-PBC-REPORT-2019-003 DOI:10.17181/CERN.FQTB.O8QN

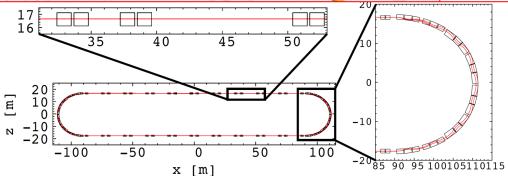
- Extraction from SPS through existing tunnel
- Siting of storage ring:

- Allows measurements to be made 'on or off axis'

Preserves sterile-neutrino search option

nuSTORM for vN scattering @ CERN — parameters

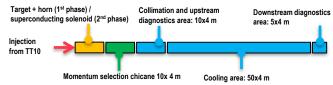

Table 1: Key parameters of the SPS beam required to serve nuSTORM.

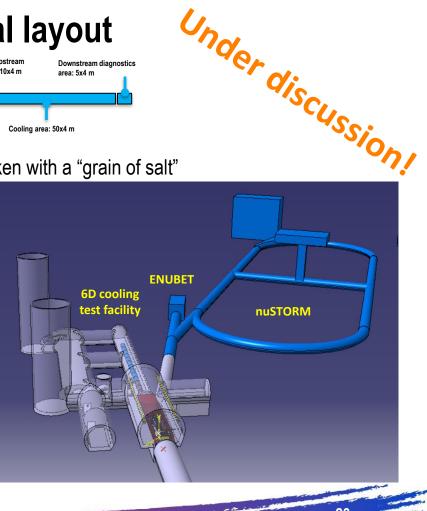

Momentum	100 GeV/c
Beam Intensity per cycle	$4 imes 10^{13}$
Cycle length	3.6 s
Nominal proton beam power	156 kW
Maximum proton beam power	240 kW
Protons on target (PoT)/year	$4 imes 10^{19}$
Total PoT in 5 year's data taking	$2 imes 10^{20}$
Nominal / short cycle time	6/3.6 s
Max. normalised horizontal emittance (1σ)	8 mm.mrad
Max. normalised vertical emittance (1σ)	5 mm.mrad
Number of extractions per cycle	2
Interval between extractions	50 ms
Duration per extraction	10.5 μ s
Number of bunches per extraction	2100
Bunch length (4 σ)	2 ns
Bunch spacing	5 ns
Momentum spread (dp/p)	2×10^{-4}

CERN-PBC-REPORT-2019-003 DOI:10.17181/CERN.FQTB.08QN

Accelerator

CERN-PBC-REPORT-2019-003 DOI:10.17181/CERN.FQTB.O8QN





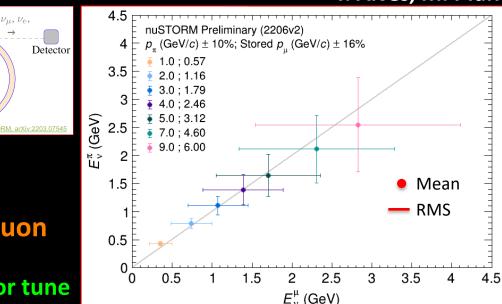
Conceptual layout

MUC Demonstrator VERY Conceptual layout → To be taken with a "grain of salt"

- The Facility is flexible enough to accommodate other experiments.
- nuSTORM and potentially ENUBET could be branched from the MUC Demonstrator Facility.
- The same target complex would be used profiting from its shielding and general target systems infrastructure, utilities, and accesses.
- The double deflection of the beamline could reduce radiation streaming towards the nuSTORM ring.
- Synergies between experiments would reduce costs on both sides.
- Is the 26 GeV/c beam from the PS appropriate for these two experiments?
 Inder study

End-to-end simulation for (re)optimisation

- "nuSIM" under development to:
 - Simulate facility "from target to detector":
 - Pragmatic approach:


6D cooling demonstrator

 $\rightarrow \pi$

Target

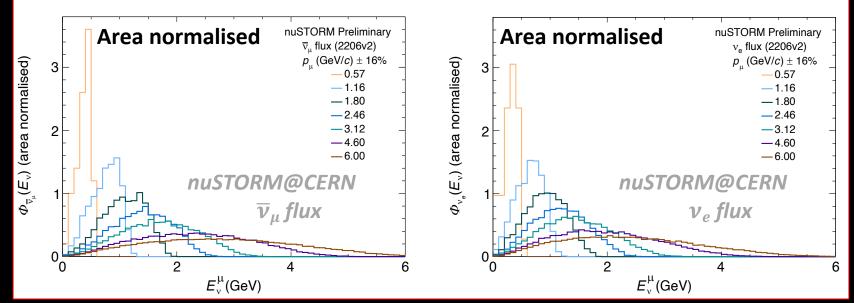
OCS

- Fast simulation, parametric approach
- Full tracking using G4 based code; "BDSIM"

- Neutrino energy scan:
 - -"Pion flash" in first pass
 - -Subsequently neutrinos from muon decay

 $\rightarrow \mu$

 $\leftarrow \mu$

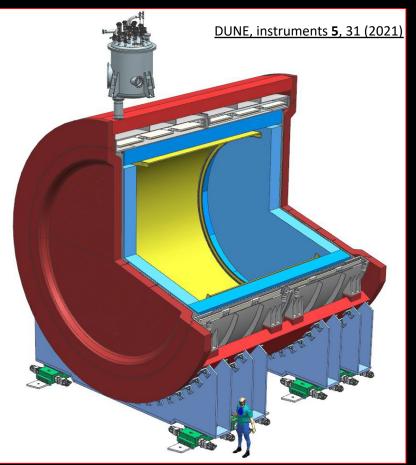

Spectrum determined by accelerator tune

T. Alves, M. Pfaff

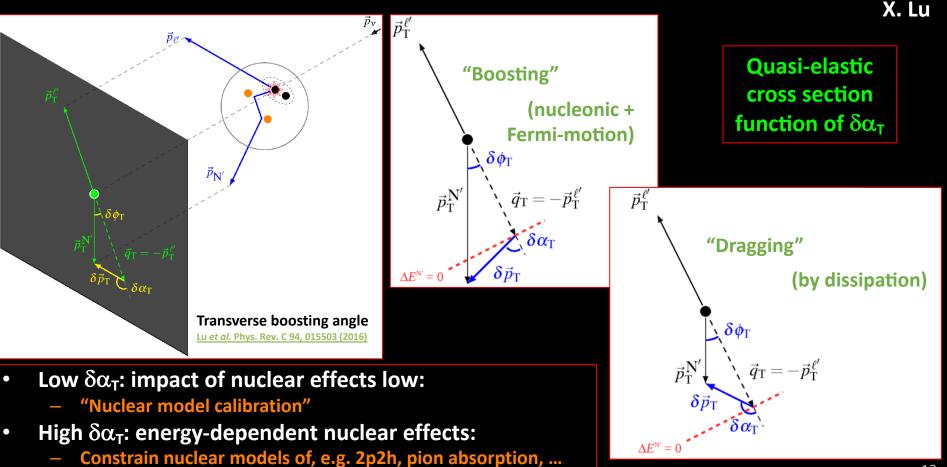
P. Kyberd et al

T. Alves, M. Pfaff nuSTORM@CERN: flux estimation

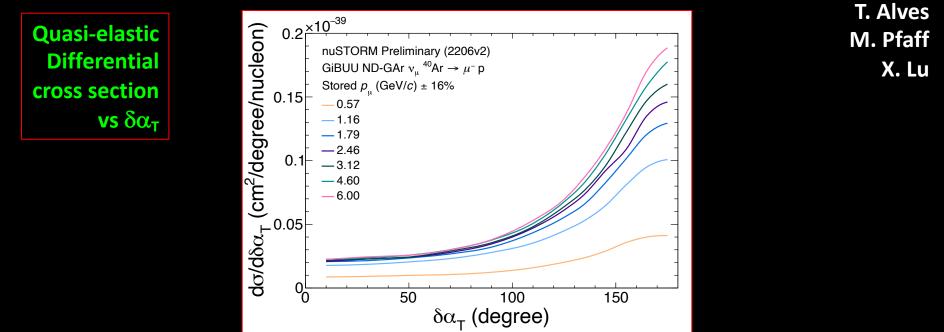
nuSTORM, arXiv:2203.07545



- Oscillation-relevant energy regime
 - Hyper-K: 0.6 GeV
 - DUNE. : 2.4 GeV
- Set by stored-muon momentum


- Unique opportunity:
 - E_{ν} -scan measurements
- Accelerator "tune" gives fine control
 - E.g. optimise flux shape (or spread) by adjusting the ring acceptance

nuSTORM@CERN: working towards a detector concept


- nuSIM ready to allow performance evaluation:
 - Require "highly capable" detector:
 - Scattered lepton
 - Inclusive and exclusive final states
- Initial study use DUNE ND-GAr:
 - TPC reference design
 - 10-bar argon-based gas TPC
 - Large gas volume
 - Surrounded by calorimeter
 - 4π acceptance, very low threshold
 - B-field provides sign selection
 - e/μ id; final state reconstruction

nuSTORM@CERN: E_{ν} -scan measurements

nuSTORM@CERN: E_{ν} -scan measurements

- Cross-section estimation using (preliminary) nuSTORM flux
- Energy evolution "tunable" to optimise sensitivity of measurement
- Start of study of energy dependence of various exclusive measurements:
 - To provide precise constraints on nuclear effects and their evolution

Conclusions

- nuSTORM will be a unique facility:
 - %-level *electron* and muon neutrino cross-sections
 - Neutrino energy scan; spectrum at each point precisely known
 - Exquisitely sensitive BSM & sterile neutrino searches
 - Serve as muon accelerator test bed
- Feasibility of executing nuSTORM at CERN:
 - Established through Physics Beyond Colliders study
- nuSTORM: a step towards the muon collider:
 - Proof-of-principle of high brightness stored muons beams
- 5-year goal: prepare robust case and "pre-CDR" for nuSTORM

nuSTORM on the route to the Muon Collider

← nuSTORM

- Accelerator key systems/technology issues:
 - High power, pulsed proton beam
 - Pion production target and capture:
 - Target, high-field solenoid capture
 - 6D ionization cooling to achieve luminosity goals: ← nuSTORM
 - High-field solenoids, compact lattice
 - High-gradient RF in magnetic field
 - Rapid acceleration:
 - Collider ring:

 - Strong focusing at IP and maintenance of short bunch length
- In a facility that delivers neutrino physics