

On behalf of many ESS stuffs and collaborators...

13th Int. Particle Acc. Conf. ISBN: 978-3-95450-227-1

IPAC2022, Bangkok, Thailand ISSN: 2673-5490

JACoW Publishing

doi:10.18429/JACoW-IPAC2022-WEP0TK001

STATUS OF THE NORMAL CONDUCTING LINAC AT THE **EUROPEAN SPALLATION SOURCE**

C. Plostinar*, C. Amstutz, S. Armanet, R. Baron, E. Bergman, A. Bhattacharyya, B. Bolling, W. Borg, S. Calic, M. Carroll, J. Cereijo Garcia, J. Christensson, J. Christie, H. Danared,

C. Derrez, I. Kittelmann, E. Donegani, S. Ekström, M. Eriksson, M. Eshraqi, J. Esteban Müller,

K. Falkland, A. Forsat, S. Gabourin, A. Garcia Sosa, A. Gorzawski, S. Grishin, P. Gustavsson, W. Hees, M. Jensen, B. Jones, S. Haghtalab, V. A. Harahap, H. Hassanzadegan, J. Jamroz,

A. Jansson, M. Juni Ferreira, M. Kalafatic, H. Kocevar, S. Kövecses, E. Laface, B. Lagoguez,

Y. Levinsen, M. Lindroos, A. Lundmark, M. Mansouri, C. Marrelli, C. Martins, J. Martins,

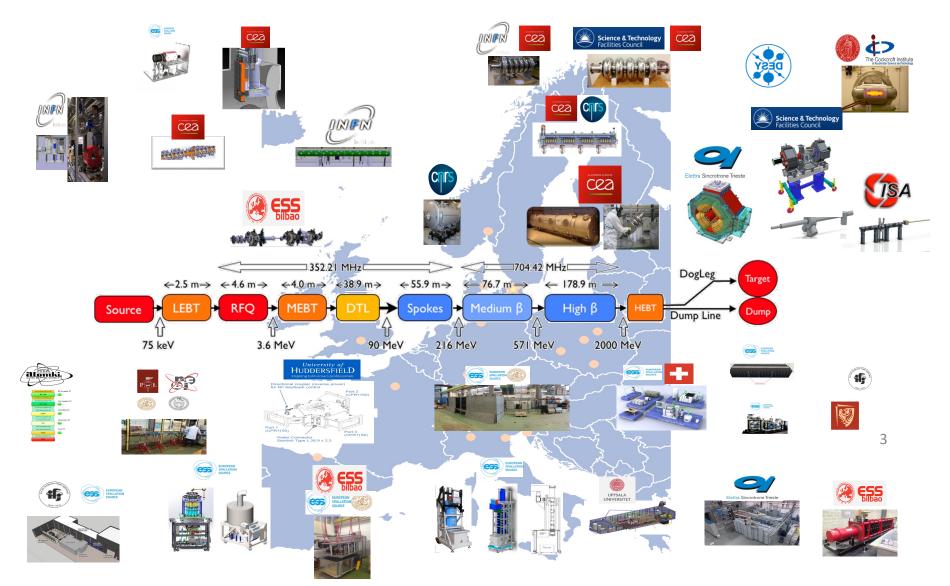
S. Micic, N. Milas, R. Miyamoto, M. Mohammednezhad, R. Montano, M. Munoz, G. Mörk,

D. Nicosia, B. Nilsson, D. Noll, A. Nordt, T. Olsson, N. Öst, L. Page, D. Paulic, S. Pavinato,

S. Payandeh Azad, A. Petrushenko, J. Riegert, A. Rizzo, K. Rosengren, K. Rosquist, M. Serluca, T. Shea, A. Simelio, S. Slettebak, H. Spoelstra, A. Svensson, L. Svensson, R. Tarkeshian,

L. Tchelidze, C. Thomas, E. Trachanas, P. van Velze, K. Vestin, R. Zeng, ESS, Lund, Sweden A.C. Chauveau, P. Hamel, O. Piquet, CEA, Saclay, France

I. Bustinduy, A. Conde, D. Fernandez-Cañoto, N. Garmendia, P.J. Gonzalez, G. Harper, A. Kaftoosian, J. Martin, I. Mazkiaran, J.L. Munoz, A.R. Páramo,


S. Varnasseri, A. Zugazaga, ESS-Bilbao, Bilbao, Spain

L. Antoniazzi, C. Baltador, L. Bellan, T. Bencivenga, M. Comunian, E. Fagotti, L. Ferrari, M. Giacchini, F. Grespan, P. Mereu, C. Mingioni, M. Montis, M. Nenni, L. Neri, E. Nicoletti, A. Palmieri, A. Pisent, D. Scarpa, INFN, Italy

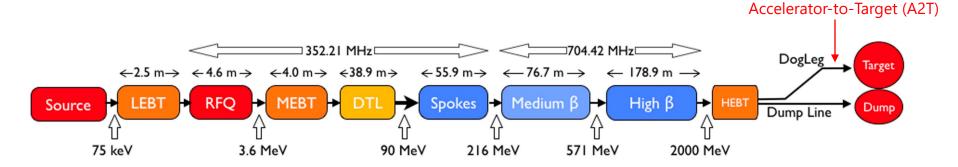
of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

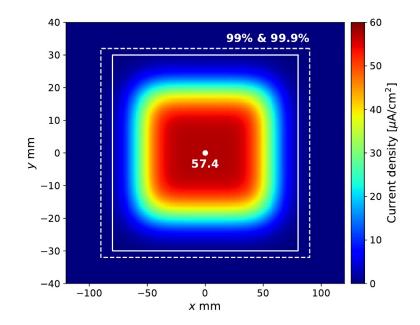
ESS linac project as European collaboration

Outline

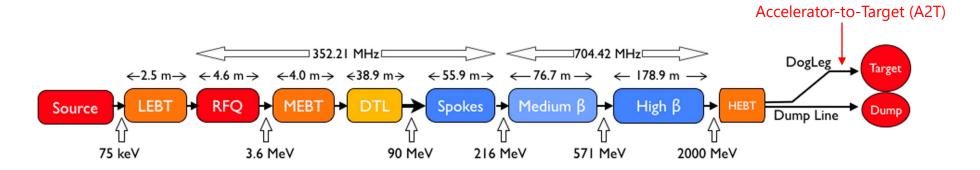
- ESS linac and commissioning
- Recent project highlights (slide-show)
- Normal-conducting (NC) linac sections
- NC linac commissioning highlights
 - Major points of NC linac commissioning

ESS Linac and Commissioning


Single page summary on ESS project and linac


- European Spallaton Source (ESS) is ...
 - Under construction in Lund, Sweden.
 - User program from 2025.
 - Driven by a high-power proton linac.
 - Normal-conducting (NC) linac + superconducting (SC) linac.
 - No accumulator ring.
 - Design: 2 GeV and 5 MW
 - Initial operations (with limited RF sources): 800 MeV and 2 MW
 - Upgrade study ongoing for neutrino program
 - Upgrade to 10 MW.
 - Proton and H- in parallel.
 - Accumulator ring.
- NC linac
 - Full current beam (62.5 mA) through DTL tank 1 (out of 5).
 - Commissioning done with missing systems/functinalities so far from completed.
 - Commissioning to DTL tank 4 next year.
- SC linac
 - Installations and testing in the tunnel and garally progressing (RF, cryo, controls, ...)
 - Manufacturing and testing of superconducing cavities and cryomodules ongoing.

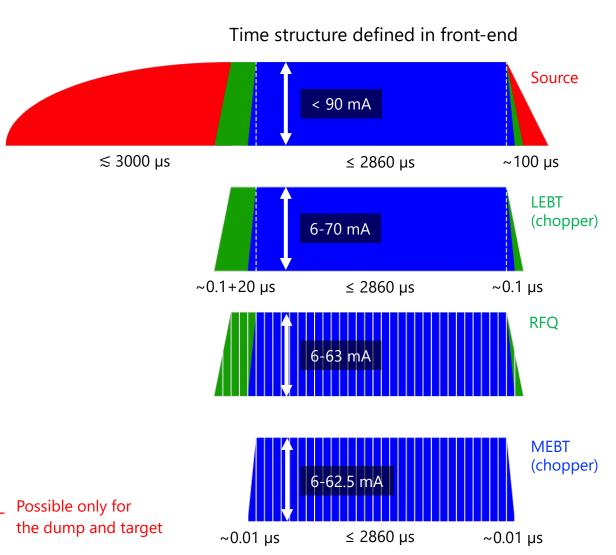
ESS proton linac overview: high level parameters


Parameter	Value
Ave power (design) [MW]	5
Max energy (design) [MeV]	2000
Ave power (initial) [MW]	2
Max energy (design) [MeV]	800
Peak current [mA]	62.5
Pulse length [ms]	2.86
Rep rate [Hz]	14
Duty cycle [%]	4
RF freq [MHz]	352.21/704.42

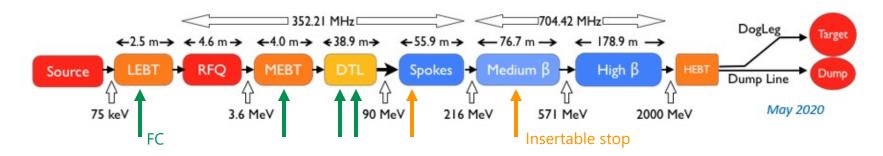
Beam footprint on target by raster system in A2T

ESS proton linac overview: lattice parameters

	Length	No. Magnet	#Cav imes etag/(Opt)	No. Sections	Power (kW)	IK partner
LEBT (from Plasma)	2.7	2 Solenoids	_	I		INFN-LNS
RFQ	4.5	_	T	I	1600	CEA Saclay
MEBT	4.0	11 Quads	3	1	15	ESS-Bilbao
DTL	38.9		5	5	2200	INFN-LNL
LEDP + Spoke	55.9	26 Quads	$26 \times (0.50)$	13	330	IPNO
Medium Beta	76.7	18 Quads	36 × 0.67	9	870	LASA / CEA
High Beta I (~1.3 GeV)	93.7	22 Quads	44 × 0.86	11	1100	STFC / CEA
High Beta II	85.2	20 Quads	40 × 0.86	10	1100	STFC / CEA
Contingency + HEDP	132.3	32 Quads	_	15	_	Elettra
DogLeg	64.4	12 Quads + 2	_	I	_	Elettra
A2T	44.7	6 Quads + 8 Raster	_	I		Aarhus Uni
	603.0					


Beam pulse time structure

Beam (envelope) modes

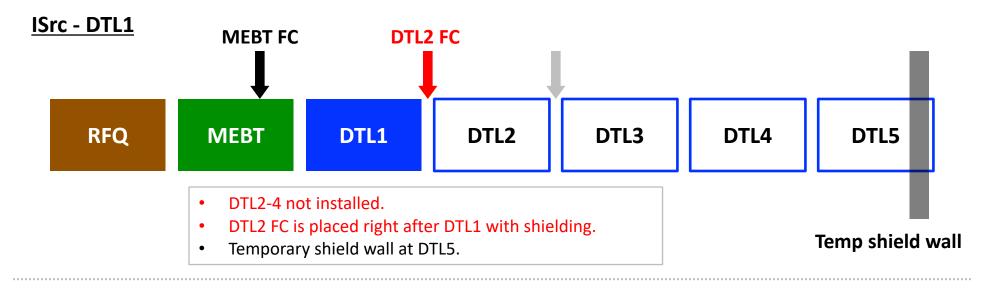

- Tied to beam permit and machine protection
- Requirements for stops and diagnostics

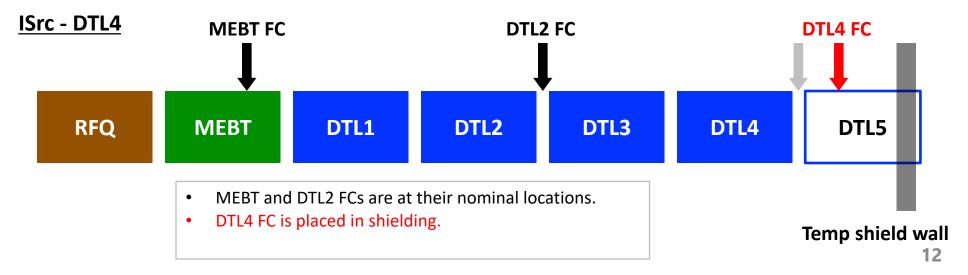
Mode	Current [mA]	Length [µs]	Rep [Hz]
Probe	≤ 6	≤ 5	≤ 1
Fast commissioning	≤ 6	≤ 5	≤ 14
RF test	≤ 6	≤ 50	≤ 1
Stability test	≤ 6	≤ 50	≤ 14
Slow commissioning	≤ 62.5	≤ 5	≤ 1
Fast tuning	≤ 62.5	≤ 5	≤ 14
Slow tuning	≤ 62.5	≤ 50	≤ 1
Long pulse verification	≤ 62.5	≤ 2860	≤ 1/30
Production	≤ 62.5	2860	14

Beam stops and diagnostics

Device	Туре	IS	LEBT	RFQ	MEBT	DTL	SPK	MBL	HBL	HEBT	A2T	DmpL	Total
Faraday cup	Current		1		1	2							4
BCM		1	1	1	2	5		1	1	2	3	2	19
Fast BCM					2								2
Doppler			1										1
BPM	Parasitic				7	15	14	9	21	16	12	4	98
Non-invasive profile	transverse		2		2		1	3	1		1		10
Imaging	Parasitic										2	1	3
Grid	target/dump transverse										1		1
Aperture											3	1	4
Emittance	Non-parasitic		1		1								2
Bunch shape					1		1						2
WS					3		3	3	1	3	1		14
BLM	Loss				4	47	78	38	86	51	38	6	348

Commissioning strategy and where we are




Final Destination	Start (Current)	End (Current)	Start (2018 Baseline)	Start (Original)
LEBT	2018-09-19	2019-07-03	2018-06-28	2017-11-20
MEBT	2021-11-10 2022-02-23 2022-04-06	2021-12-17 2022-03-12 2022-05-23	2019-11-04	2018-11-05
DTL1	2022-05-30	2022-07-13		
DTL4	2023-03-08	2023-06-19	2020-04-27	2019-01-24
Dump	2024-07-15 (570 MeV)	2024-10-15	2021-02-08 (570 MeV)	2019-05-13 (2 GeV)
Target	2025-04-24 (570 MeV)		2022-06-08 (1370 MeV)	2019-06-24 (2 GeV)

- No temporary stop nor diagnostics after the first step for the source+LEBT. At least we kept reasonable set of permanent diagnostics throughout the linac.
 - So that we can repeat any missed/failed test later.
- Aggressive schedule means that the driver of commissioning plan is the situations of installation, integration to control system, and hardware testing.
 - The focus of commissioning is to make all systems work and establish the minimal beam to the final destination, instead of fully characterizing high current beam.
 - We didn't have schedule and resource for deploying a test bench, anyway.
- This strategy of deprioritizing high current beam aligns to the user's demands on 2.86 ms and 14 Hz.

NC linac commissioning configuration (updated)

Recent Project Highlights (Slide-show)

IS, LEBT, RFQ, and MEBT (without cables)

IS, LEBT, RFQ, and MEBT (with cables)

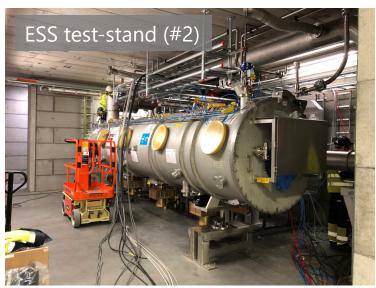
DTL tank 1

RF systems

Operational for NC linac

Cryomodule assembly ongoing at in-kind

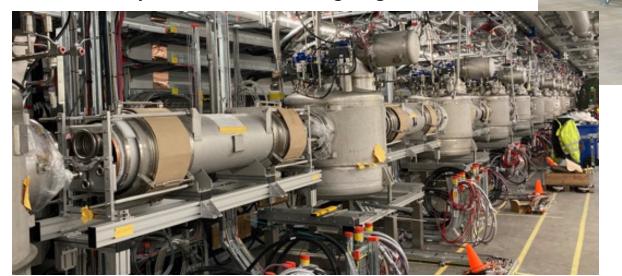
Elliptical cryomodules at CEA



Spoke cryomodules at IJC-Lab

SC cavities and cryomodule testing ongoing

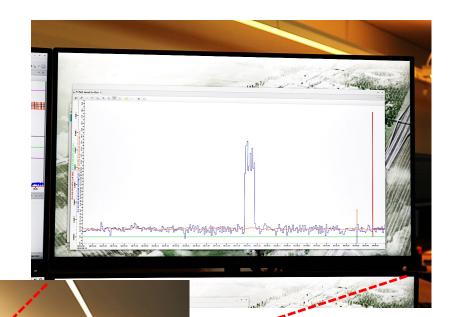
Cryomodules delivered to the ESS site



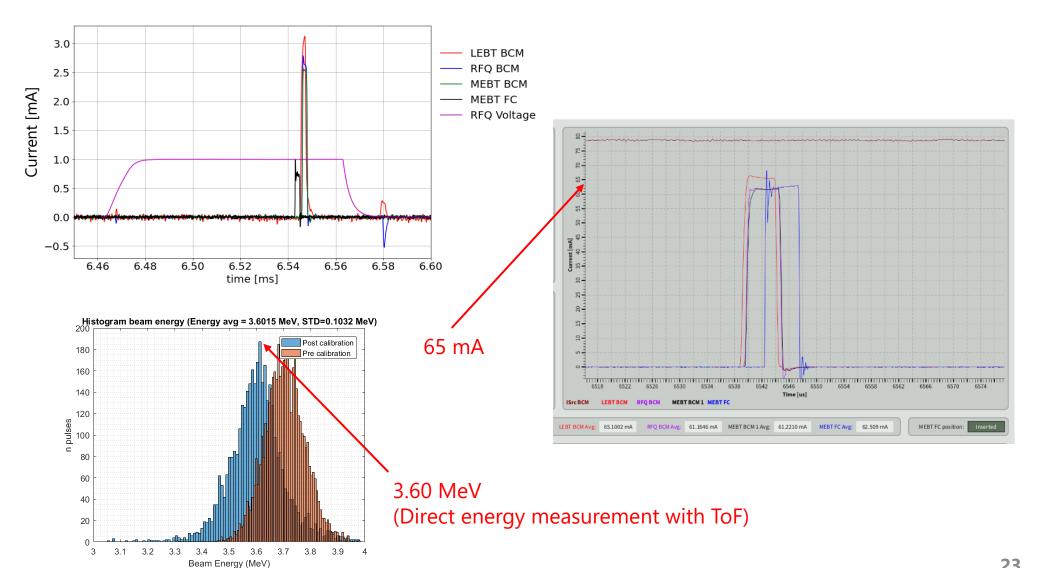
Cryo system

Distribution system installation ongoing

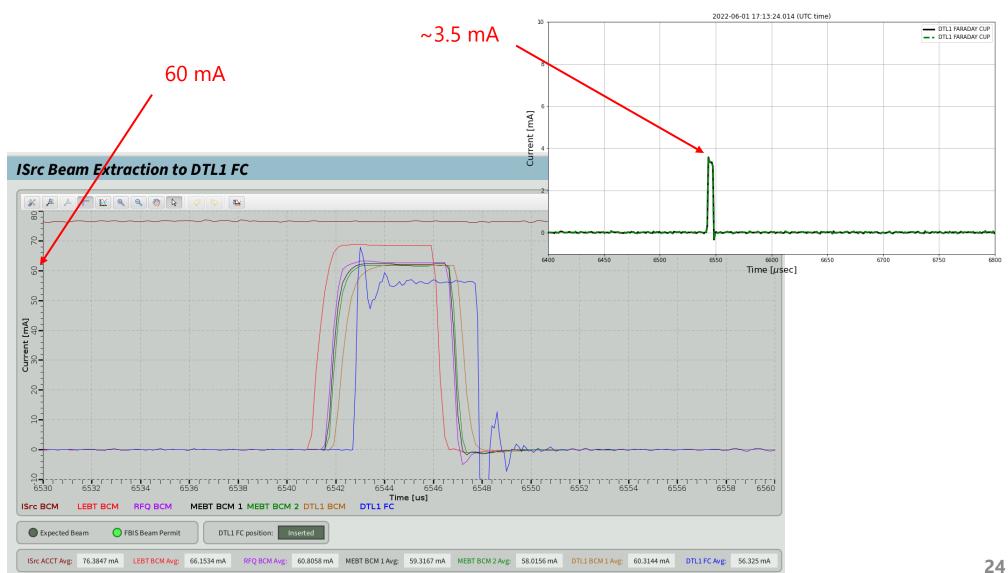
Test ongoing for years


Very first beam on the ESS site, 2018-09-19

Logbook message ID 69, 2018-09-19 10:31

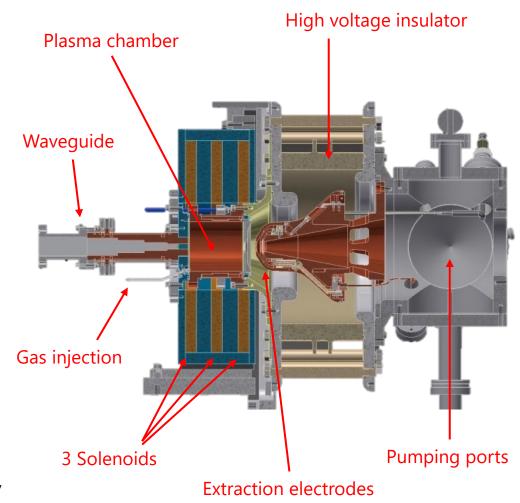

Ryoichi on behalf of ISrc team.

"THE" screenshot of the first beam! Blue trace is the integrated charge per pulse in micro-C. 12 micro-C and 2 ms gives 6 mA. We had the beam for about 10 s.

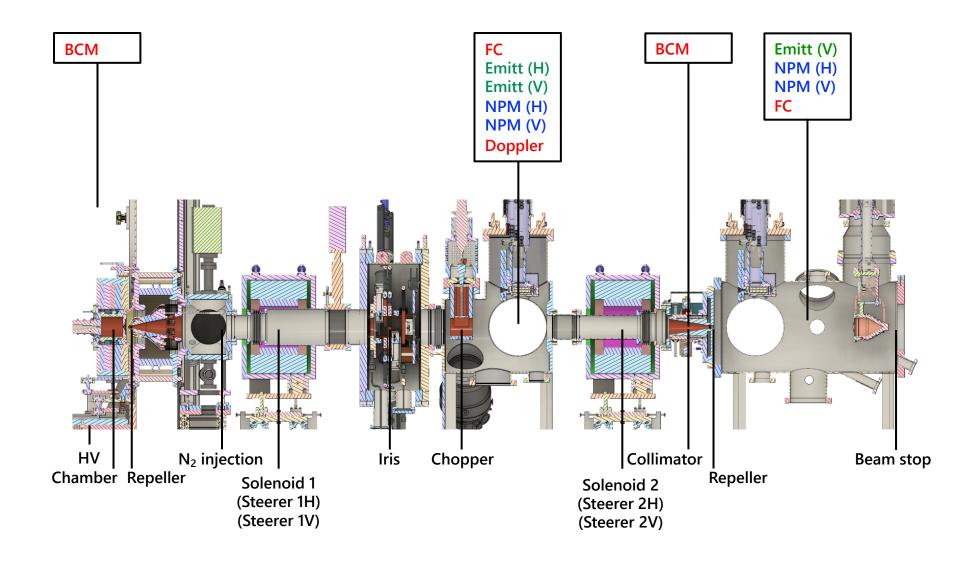

First beam through RFQ, 2021-11-26 First nominal current beam up to MEBT, 2022-03-12

First beam through DTL1, 2022-06-01 First nominal current out of DTL1, 2022-07-01

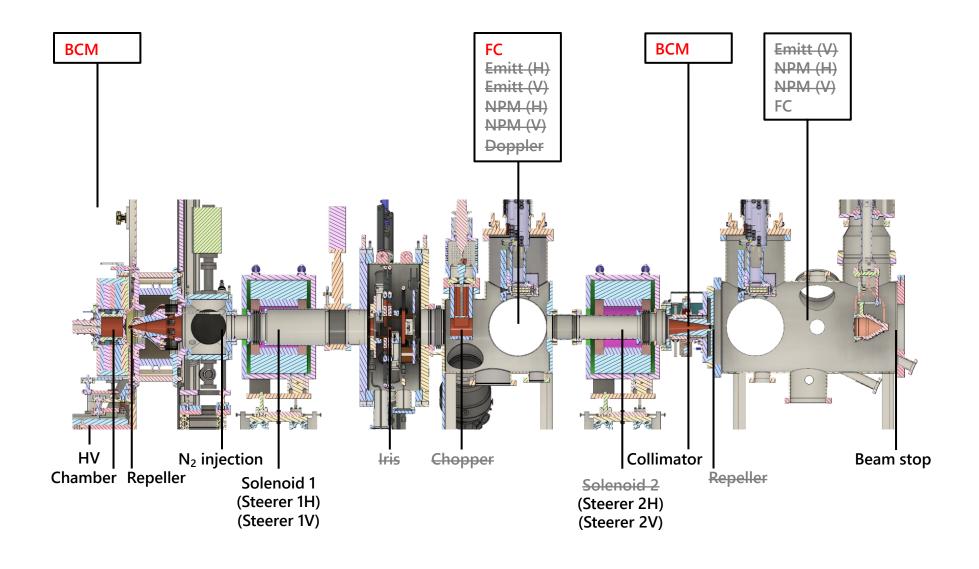
End of DTL1 commissioning

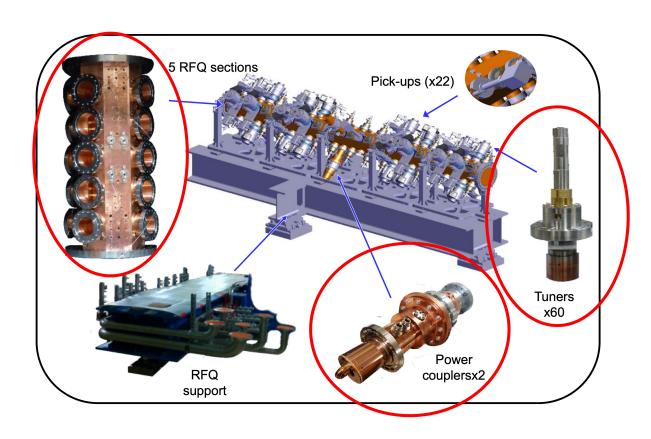

NC Linac Sections

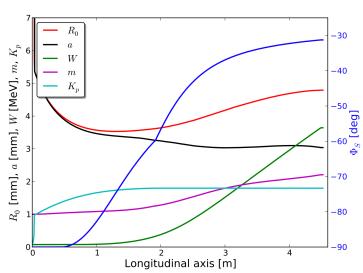
ESS microwave discharge source

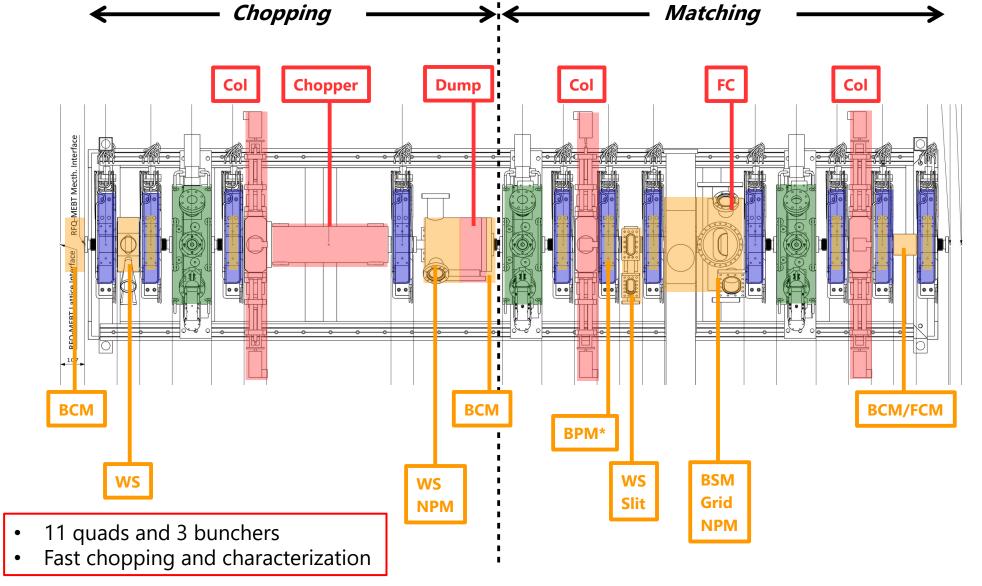

Requirements	Value
Beam energy [keV]	75±5
Proton current [mA]	74
Proton fraction [%]	>75
Pulse length [ms]	6
Pulse flattop length [ms]	3
Rep rate [Hz]	14
Pulse to pulse stability [%]	±3.5%
Pulse flattop stability [%]	±2
Emittance (99%) [π mm mrad]	1.8
Divergence (99%) [mrad]	80

- 5 Primary knobs:
 - RF power
 - H2 flux
 - 3 solenoids (coils) => great flexibility


LEBT systems during beam commissioning

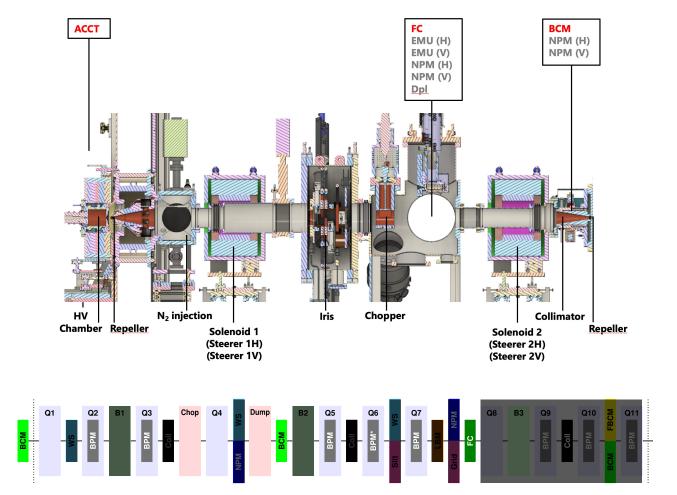

LEBT systems at the restart


ESS RFQ


The ESS RFQ in numbers

- 4.6 m long
- 2 coaxial power couplers
- 4 vanes ;-)
- 5 segments
- 22 field pickups
- 60 static tuners
- 66 cooling circuits
- 80-120 kV intervane voltage
- 352.21 MHz

ESS MEBT



Systems status at the start of the MEBT commissioning

- Started with current measurement diagnostics and BPMs.
- Missing Lattice elements
 - MEBT-bunchers
 - MEBT-collimators
- Missing diagnostics
 - LEBT-Dpl
 - LEBT-NPMs
 - LEBT-EMUs
 - MEBT-WSs*
 - MEBT-NPMs
 - MEBT-EMUs*
 - MEBT-BSM
- RFQ-LLRF still under testing
 - Feedback*
 - Feed-forward*

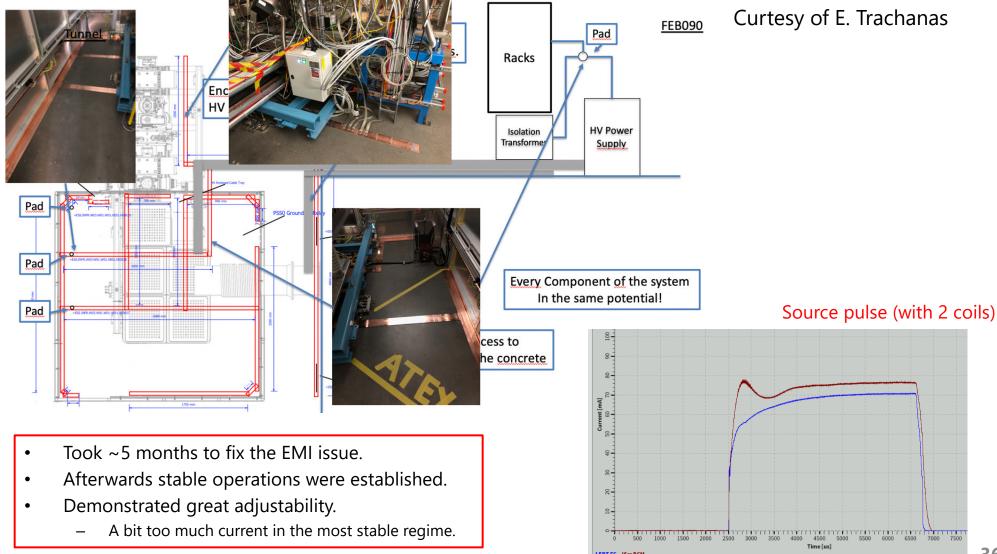
ESS DTL1

Courtesy of F. Grespan

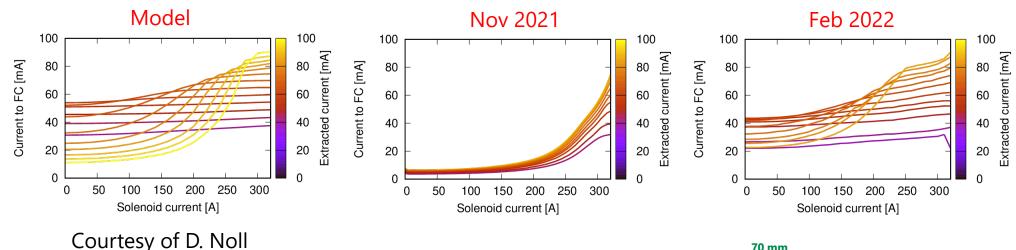
Tank	1	2	3	4	5
Cells	61	34	29	26	23
E ₀ [MV/m]	3.00	3.16	3.07	3.04	3.13
E_{max}/E_{k}	1.55	1.55	1.55	1.55	1.55
ϕ_s [deg]	-35,-25.5	-25.5	-25.5	-25.5	-25.5
L _{Tank} [m]	7.62	7.09	7.58	7.85	7.69
<u>Diam</u> Tank [mm]	521	521	521	521	521
R _{Bore} [mm]	10	11	11	12	12
N.PMQ - 1st/last cover	31 - Y/N	18 -Y/Y	15 - N/Y	13 - N/N	12 - Y/N
Radius PMQ [mm]	11	12	12	13	13
L _{PMQ} [mm]	50	80	80	80	80
Tun. Range [MHz]	±0.75	±0.75	±0.75	±0.75	±0.75
Q0/1.25	42512	44455	44344	43894	43415
Optimum β	2.01	2.03	2.01	1.91	1.84
Optimum Detuning [kHz]	+2.3	+2.0	+2.0	+1.8	+1.8
P _{cu} [kW] (no margin)	870	862	872	901	952
E _{out} [MeV]	21.29	39.11	56.81	73.83	89.91
P _{TOT} [kW]	2192	2191	2196	2189	2195

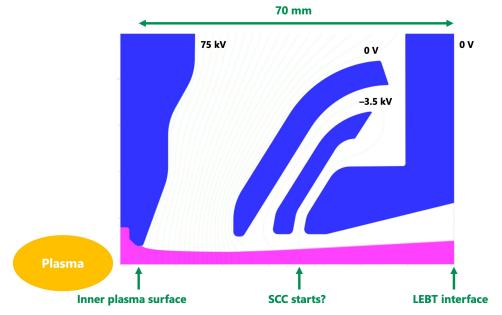
- DTL1 beam commissioning started in the middle of the conditioning campaign.
- High-power conditioning continued till the end of beam commissioning.

NC Linac Commissioning Highlights

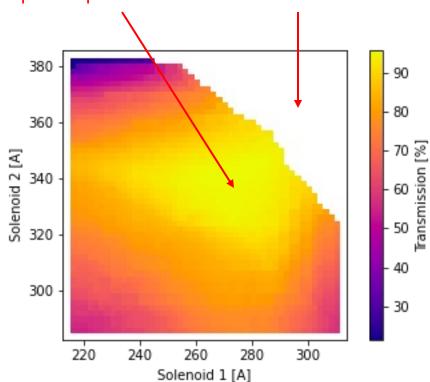

Single page summary on NCL commissioning

- Nominal 62.5 mA beam through DTL1.
 - No trouble in current ramp-up, despite of missing a log of diagnostics.
 - After resolving the repeller issue.
 - For 62.5 mA, pulth length was limited to 20 μ s.
 - Most characterization was performed with 5 µs beam.
 - Need a longer pulse to characterize the neutralization effect in LEBT.
- Project strategy for aggressive schedule meant ...
 - Limitations in duty factor and beam power.
 - No temporary beam dump, only FCs.
 - Testing RF with full pulse length has to wait for a long time.
- We ended commissioning in mid-July and went into holidays. Off-line analyses continue after holidays.
- Peak performane of hardware is good so far.
- But, we need to improve availability and operations.
 - Frequent reconditioning of buncher cavities for very low power.
 - Instability during the ramp due to multipacting.
 - Need to improve management of systems configurations.
 - Need to fine-tune processes and procedures.

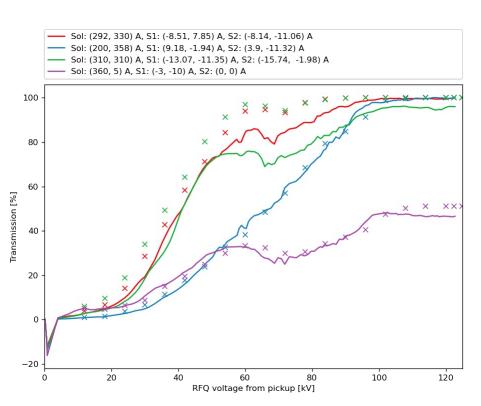

Source needed grounding improvements for EMI



ISrc repeller was discovered to be disconnected


- It was found that the ISrc repeller was not conntected during maintenance in Jan 2022.
 - Not straighforward to measure voltage on a capacitor.
- The ISrc behaviour much close to the model.
- Unfortunately most data from 2019 and 2022 became useless (including emittance) and we're back to the squre-one.

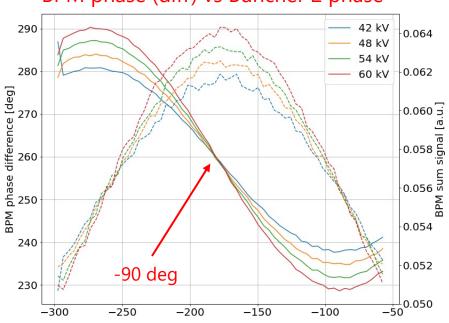
Tuning LEBT and RFQ



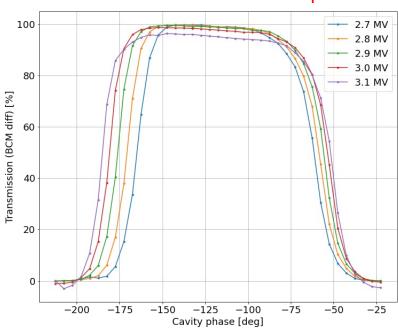
LEBT solenoids scan:

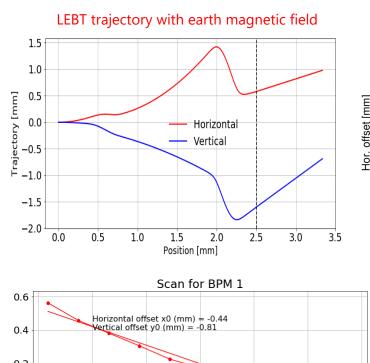
 Best transmission = best emittance preservation

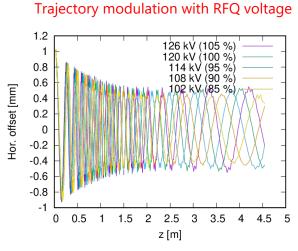
RFQ voltage scan

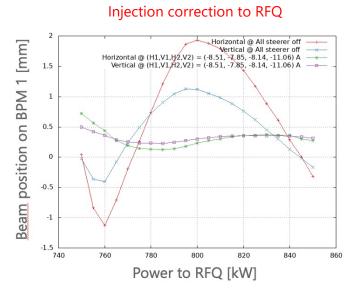

- Only degrees of freedom
- Good matching to the model against the reconstructed distribution

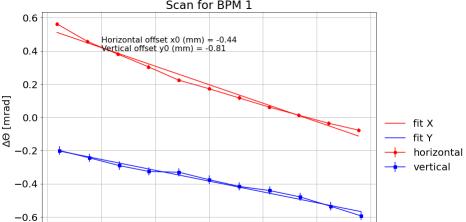
Cavity amplitude and phase setting


- Major activies during commissioning and start-ups


DTL1 transmission vs DTL1 phase




- Synchronizations of cavities have to be established one by one from the downstream side.
- "Phase scan": scan a cavity phase and look and BPM phase (time-of-flight).
 - Check the energy or the pattern ("signature matchig").
 - Also provide beam based calibration of amplitude, e.g., Buncher 3 was off by ~10%.
- For DTL1, we can do the same with transmission vs phase.

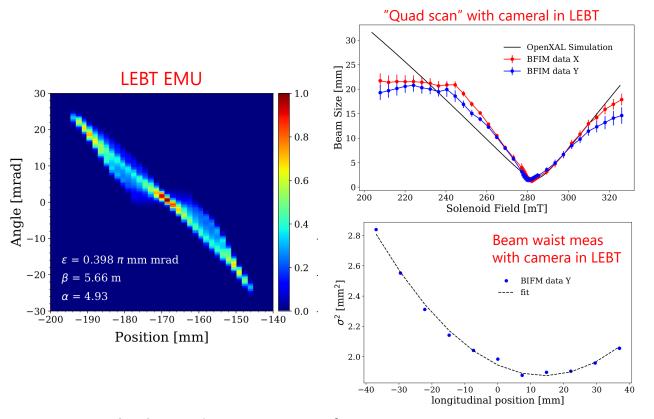

Beam trajectory

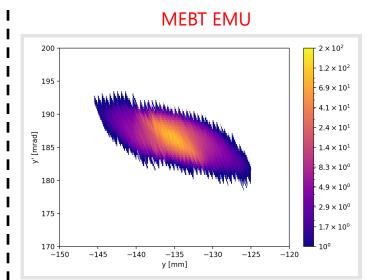
5

10

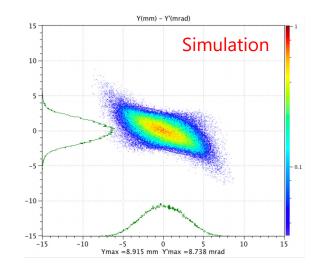
15

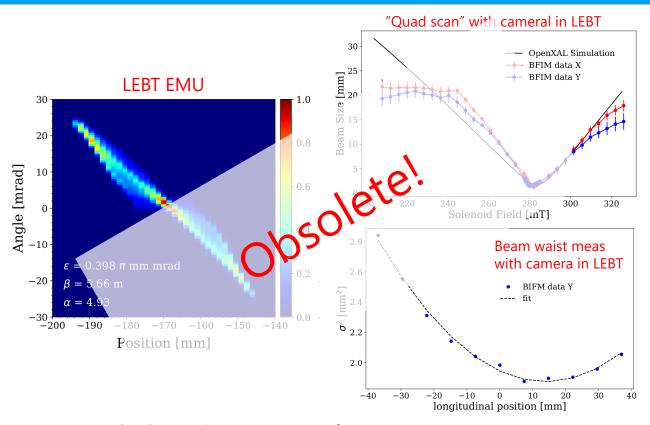
- Beam steering is not as important for a ring.
 - As long as there's no loss.
- Earth magnetic field (~47 μT downward) has a large impact in LEBT.
 - Injection correction to RFQ for modulated RFQ voltage.
 - Not so much attentioned paid to steering in MEBT and DTL1, due to a good transmission.
 - Beam-based alignment tried for a few BPMs in MEBT.


Δk

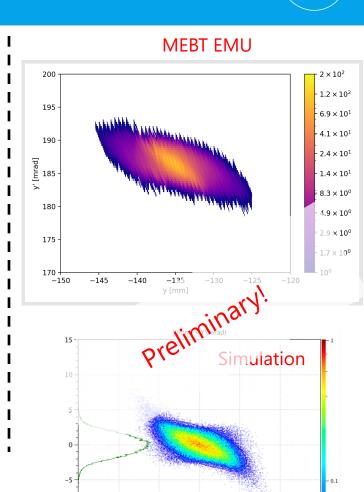

-15

-10

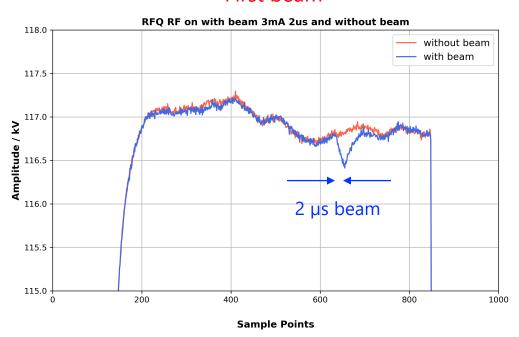

Emittance



- 3 methods consistent (10-20%) for LEBT.
 - Instruments not available after the IS-LEBT commissioning.
 - Data no longer vaild. (Repeller issue)
- MEBT EMU (V-plane) became available during last ~1 week.
 - Preliminar result shows $\sim 0.5 \, \pi$ mm mrad. (Sensitive to how to cut noise, as usual.)
 - Beta off by -30%, alpha -0.2.
 - H-unit became available on the last day and showed a similar value.

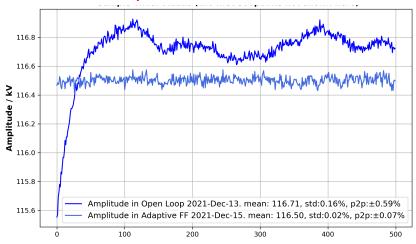

Emittance

- Instruments not available after the IS-LEBT commissioning.
- Data no longer vaild. (Repeller issue)
- MEBT EMU (V-plane) became available during last ~1 week.
 - Preliminar result shows $\sim 0.5 \, \pi$ mm mrad. (Sensitive to how to cut noise, as usual.)
 - Beta off by -30%, alpha -0.2.
 - H-unit became available on the last day and showed a similar value.


Ymax =8.915 mm Y'max =8.738 mrad

-10

LLRF



First beam

- Feedback and feed-forward are not yet finalized and still under testing.
- Peak-to-peak flatness ~0.5% (due to the modulator?)
 - Requirement: 0.2% in RMS after the first 10 μs.
- Beam loading \sim 0.5% for 3 mA and 2 μ s beam.

Script based feed-forward

Summary

Single page summary on ESS project and linac

- European Spallaton Source (ESS) is ...
 - Under construction in Lund, Sweden.
 - User program from 2025.
 - Driven by a high-power proton linac.
 - Normal-conducting linac (NCL) + superconducting linac (SCL).
 - No accumulator ring.
 - Design: 2 GeV and 5 MW
 - Initial operations (with limited RF source): 800 MeV and 2 MW
 - Upgrade study ongoing for neutrino program
 - Upgrade to 10 MW.
 - Proton and H- in parallel.
 - Accumulator ring.
- NCL
 - Full current beam (62.5 mA) through DTL tank 1 (out of 5).
 - Commissioning with minimal systems so far from completed.
 - Commissioning to DTL tank 4 next year.
- SCL
 - Installations and testing in the tunnel and garally progressing (RF, cryo, controls, ...)
 - Manufacturing and testing of superconducing cavities and cryomodules ongoing.

Single page summary on NCL commissioning

- Nominal 62.5 mA beam through DTL1.
 - No trouble in current ramp-up (after resolving the repeller issue).
- Project strategy for aggressive schedule meant ...
 - Limitations in duty factor and beam power.
 - No temporary beam dump, only FCs.
 - Testing RF with full pulse length has to wait for a long time.
- We ended commissioning in mid-July and went into holidays. Off-line analyses continue after holidays.
- Peak performane of hardware is good so far.
- But, we need to improve availability and operations.
 - Frequent reconditioning of buncher cavities for very low power.
 - Instability during the ramp due to multipacting.
 - Need to improve management of systems configurations.
 - Need to fine-tune processes and procedures.

Thank you for your attentions!