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Muon collider 9
Significant interest in the Muon Collider as an Energy Frontier
Facility

Needs ionisation cooling

Transverse cooling at high emittance demonstrated by MICE

Now need to follow up with 6D cooling at lower emittance

What could such a Demonstrator look like?

Where could it be sited?

How does it fit into the muon - and neutrino - programme?
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Muon co

Vs [TeV]

= Muon collider has enormous potential

= Muons are fundamental particles -» energy per parton >> proton
beam at same energy

= Muons are high mass - recirculate muons without synchrotron
radiation

= Compared to other energy frontier colliders
"= Luminosity increases as E? = great potential at multi TeV scale
= Compact | -
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Muon collider facility

Accelerator

Muon Collider
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Cooling

Acceleration + collisions

Cooling on time scale of muon lifetime is challenging
= |onisation cooling is proposed technique

= 4D cooling demonstrated by MICE
= Now need to go to the next step - but how?
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lonisation Cooling %?

RF| 77— MUONS

= Beam loses energy in absorbing material
= Absorber removes momentum in all directions
= RF cavity replaces momentum only in longitudinal direction
= End up with beam that is more parallel

= Multiple Coulomb scattering from nucleus ruins the effect

= Mitigate with tight focussing - low [3

= Mitigate with low-Z materials
= Equilibrium emittance where MCS cancels the cooling

= Verified by the Muon lonisation Cooling Experiment (MICE)
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6D lonisation Cooling

Initial beam is narrow with some momentum spread

= Low transverse emittance and high longitudinal emittance
Beam follows curved trajectory in dipole

= Higher momentum particles have higher radius trajectory
= Beam leaves dipole wider with energy-position correlation
Beam goes through wedge shaped absorber

= Beam leaves wider without energy-position correlation

= High transverse emittance and low longitudinal emittance
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Cooling for a Muon Collider
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Rectilinear Lattice (Stratakis et al) @
JAietcaiae
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= Challenges
= Dispersion and closed orbit control for 6D cooling
= Successful RF operation and suppression of RF breakdown
= Maintaining adequate acceptance between stop bands
= Magnet engineering
= |ntegration of magnet with RF and absorber
= Day-to-day operation and instrumentation

= Also intensity/collective effects —» proton beam test?

= Space charge, beam loading, absorber/RF window heating
= Decay radiation load on magnets 8



Target

Upstream Instrumentation
and Matching

== High-intensity high-energy pion source

Collimation and
phase rotation
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Preliminary Cooling Cell Concept
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Optics vs momentum @
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B-fields reduce RF Safe
Operating Gradient (S0G)

" e emitted from copper
= B-field focuses on far wall
" Induces sparks
Muon cooling needs high
RF gradient + B-field
Two routes demonstrated

= Either: Beryllium window
resistant to damage

= Or: High-pressure gas
absorbs spark
Other ideas

"= QOperate at IN2
temperature

= Short RF pulse to limit
heating

ke

Integration issue: RF
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Window

material B-field (T) SOG (MV/m)
Cu 0 2444+ 0.7
Cu 3 1294+ 0.4
Be 0 41.1 & 2.1
Be 3 > 498+ 25
Be/Cu 0 4394+ 0.5
Be/Cu 3 10.1 4+ 0.1

Bowring et al
Pressure (psia) at T=293K
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Performance @
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= Good cooling performance

= Transverse and -
longitudinal emittance
reduced by ~ 20 %

= Approx factor two
reduction in 6D emittance

= Optimisation ongoing
= Assumes perfect matching e
for now

1.5

z [m]

Transmission losses 2.00%

Decay losses 4.00%

Trans € in 1.95 mm
Trans € out 1.57 mm
Long € in 3.61 mm
Long € out 2.99 mm
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Beam preparation system %D
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Beam Preparation System

= ~ 100 ps pulsed muon beams
don’t exist

= Muons have never been
accelerated in conventional RF
cavity

= Low emittance muon beam
challenging to achieve

= Need to consider a system to

prepare the muon beam Parameter Value
= Assume momentum collimation Cell length I'm
in switchyard Peak solenoid field on-axis 05T
: - Collimator radius 0.05 m

|
Trans.,ver.se collimation | Dipole field 0.67 T
= Longitudinal phase rotation Dipole length 1.04 m
RF real estate gradient 7.5 MV/m
RF nominal phase 0° (Bunching)
RF frequency 704 MHz
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Beam preparation system
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Beam preparation system
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Beam preparation system

24 -8=4.986 ns olp)= 6,605 MeV
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Comparison with MICE %)
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Target Collimation and
phase rotation

MICE Demonstrator
Cooling type 4D cooling 6D cooling
Absorber # Single absorber Many absorbers
Cooling cell Cooling cell section Many cooling cells
Acceleration No reacceleration Reacceleration
Beam Single patrticle Bunched beam
Instrumentation HEP-style Multiparticle-style
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= Two potential sites
Identified
= New site

= Advantageous for use of
pion beam

= Points towards North
Area

= Existing tunnel

"= Limited beam power
possible

= Leverage existing
infrastructure

Calviani et al
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NUSTORM (&)

M[nternational
TIAN A~ 112 o
1_015
Fundamental physics
6D cooling demonstrator Vs Ve, 1014 e ® Material science
,,,,,,,, {j ® o e Testbeams
- M Detector 1012 NuUSTORM
® Muon Collider
LEMMA
E lolD 4
S
= @
g 8 -
« [ E » ¢
§ @
Storage ring = 106 e
o
104 4
102 sl
0

= New site compatible with nUSTORM = = o = a0 ot woe o
= Measurement of neutrino scattering cross sections
= Beyond Standard Model physics programme

= Muon beam test area for Demonstrator

= Demonstration of highest-current high-energy muon beam
facility

= Pion beam handling
= Target concepts can be tested
= FFA storage ring — rapid acceleration concepts
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Muon-Based Neutrino Factory @

International
z UON Collider
Neutrino Factory (NuMAX) Tl
Proton Driver Front End |Cool- | Acceleration |1 Storage Ring
ing o
— Vv
e
5 5 |89 5 5| wi 0.2-1 1-5 —
5 g ERE § B[S GeV GeV H
E : S50 3 @13 =0.35 km
g S 828 2= Accelerators:
= i == Single-Pass Linacs
s (Opt. RLA or FFAG)

Share same complex

&
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= DUNE phase Il is systematics-limited
= How can neutrino community progress?
= One option is neutrino factory
= Pure, well-characterised neutrino beam
= Great sensitivity to oscillation parameters
= High sensitivity to BSM physics
= Upgradeable to muon collider
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Potential path to muon collider ®/ﬂ

Neutrino Factory (NuMAX)

Proton Driver Front End Ccfol- Acceleration 11 Storage Ring
-

/= DUNE phase 1 L« —t )
= DUNE phase 2 + nuSTORM | = = v
= DUNE “phase 3” (nuMAX) =035km
= Muon collider :;}:Fa:é)

; = ALSO a neutrino source

= Each phase constructed during operation of the previous phase
= Each phase builds on previous phase’s infrastructure
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= Growing interest in the muon collider
= High Priority Initiative in European strateqgy for particle physics

= Same level as e.qg. high field dipole programme
= Highlighted in European strategy for particle physics accelerator R&D

roadmap
= Muon collider grant issued by EU

= Strong recommendation to develop a design by Snowmass Energy

Frontier
= Demonstration of cooling is a key technology requirement

= Demonstrator lattice proposed

= Beam preparation system considered

= Optimisation and further studies ongoing
= Compatible with nuSTORM

= Aim is to deliver a design by 2026
= |n time for next European strategy update
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