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Muons in particle physics

 Growing interest surrounding potential for a muon collider
 Muon fundamental particle → full energy available for collision

 Not composite like a proton
 High mass suppresses synchrotron radiation
 R&D recommended as high priority in European Strategy Update

 New collaboration studying a collider at CERN
 “Dream machine”

 Highlighted as high priority by Snowmass Energy Frontier
 Muon beams can help at the neutrino frontier

 Extremely pure, well characterised neutrino source
 Measurement of neutrino cross-sections to support DUNE, T2K
 Direct production of neutrino beam for neutrino oscillations
 Neutrino beams from muons → unique access to BSM physics

 Strong European support
 CERN and many European labs (INFN, STFC, CEA, KIT, ...)
 EU grant approved
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Muons at the energy frontier

Alessandro Tricoli, Snowmass22 Energy Frontier report summary 
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Muons at the energy frontier

 MW-class proton driver → target
 Pions produced; decay to muons
 Muon capture and cooling
 Acceleration to TeV & Collisions
 Critical Issues:

 High initial beam emittance
 Short muon lifetime
 Neutrino radiation
 Detector Beam induced Background
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 Beam loses energy in absorbing material
 Absorber removes momentum in all directions
 RF cavity replaces momentum only in longitudinal direction
 End up with beam that is more parallel

 Multiple Coulomb scattering from nuclei ruins the effect
 Mitigate with tight focussing
 Mitigate with low-Z materials
 Equilibrium emittance where MCS cancels the cooling

 Verified by the Muon Ionisation Cooling Experiment (MICE)

Ionisation Cooling

Absorber MUONSRF
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Experimental set up

Measure muon 
position and 
momentum 
downstream

Measure muon 
position and 
momentum
upstream

Cool the muon 
beam using 
LiH, LH2, or 
polyethylene 

wedge 
absorbers

Beam 
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Cooling apparatus

 Spectrometer solenoids upstream and downstream
 Focus coil module provides tight focus on absorber
 Choice of liquid hydrogen or solid absorbers

Spectrometer
Solenoid

Focus Coil 
Module

lH2
Absorber
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Absorber

 65 mm thick lithium hydride absorber
 350 mm thick liquid hydrogen absorber 

 Contained in two pairs of 150-180 micron thick Al windows
 45o polythene wedge for longitudinal emittance studies



  

Instrumentation

 Scintillating Fibre Trackers
 Individual muons follow helical path in 

spectrometer solenoids
 Position of particles measured by 5 stations of 

scintillating fibres
 Yields positions and momenta of particles
 Measure “amplitudes” of individual muons

 Distance from beam centre in phase space
 Time-of-flight measurement enables rejection 

of pion and electron beam impurities
 Supported by threshold Ckov counters and 

calorimeters

pions

muons
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Phase space reconstruction

 MICE individually 
measures every particle

 Accumulate particles into 
a beam ensemble

 Can measure beam 
properties with 
unprecedented precision

 E.g. coupling of x-y from 
solenoid fields
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Amplitude reconstruction

 Phase space (x, px, y, py)
 Normalise phase space 

to RMS beam ellipse
 Clean up tails

 Amplitude is distance of 
muon from beam core

 Conserved quantity in 
normal accelerators

 Ionization cooling 
reduces transverse 
momentum spread

 Reduces amplitude
 Mean amplitude ~ “RMS 

emittance”
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Change in Amplitude Across Absorber

 No absorber → slight decrease in number of core muons
 With absorber → increase in number of core muons

 Cooling signal

Upstream

Downstream

no
cooling

no
cooling

scraping

scraping
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Change in Amplitude Across Absorber

 No absorber → slight decrease in number of core muons
 With absorber → increase in number of core muons

 Cooling signal

Upstream

Downstream

cooling

cooling cooling

cooling
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Ratio of core densities

 Core density increase for LH2 and LiH absorber → cooling
 More cooling for higher emittances
 Consistent with simulation

no
cooling

no
cooling

cooling cooling

coolingcooling



  

Transverse Emittance

 Also measure change in 
RMS emittance

 Mean of the amplitude 
distribution

 Look at different sub-
samples of the muon 
ensemble

 In absence of absorber weak 
heating

 With absorber
 Cooling for high emittance 

beams
 Heating below equilibrium 

emittance
 Consistent with theory

 Publication in progress

heating

heating

cooling

cooling
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Field flips and solenoid mode

 Beams entering solenoids develop kinetic angular momentum
 Radial field component → transverse momentum
 Canonical angular momentum conserved

 Energy loss is non-conservative process
 Kinetic angular momentum is lost
 Canonical angular momentum builds up
 Unless field is 0 → “flip” the field

Beam

B
r

v
z

F

L
can

 = r    (p-qA)×
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Solenoid Mode

coolingcooling
cooling

 Non-zero field
 easier magnets 
 angular momentum non-conservation
 Considered for final cooling system

 Cooling performance in solenoid mode → similar to flip
 Compatible with simulation
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 Introduce energy-position correlation 
using dipole

 Higher energy particles pass through 
more material

 Higher energy particles lose more 
momentum

 Results in “emittance exchange”
 Emittance moves from longitudinal to 

transverse
 Results in reduction in longitudinal 

emittance and transverse emittance

Beyond MICE - Emittance Exchange
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Future Experiment

Rectilinear B (Stage B8)

Final 
cooling

MICE

“MICE-like”

 Significant interest in a follow-up experiment
 Longitudinal and transverse emittance reduction
 Explore lower emittances
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Demonstrator baseline

 IPAC paper on Demonstrator baseline
 Nothing new, but reporting on previous work
 Of course, optimisation is still in progress
 Helpful to document a baseline I hope

 Optimisation
 Looking at optical arrangement
 Consideration of dynamic aperture

 Talk Friday, 11:40 AM - 12:05 PM 

  

RF Solenoid Absorber

Upstream Instrumentation 
and Matching Downstream

Instrumentation

Target Collimation and 
phase rotation

High-intensity high-energy pion source
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Muons at the neutrino frontier

 Muon beams can help!

(emphasis mine)

 Neutrino oscillation measurements limited by two main 
sources of uncertainty

 Number and flavour of the neutrino beam
 Neutrino interactions with matter → energy uncertainty
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nuSTORM as a Muon Source

 High-brightness muon source needed for a future experiment
 nuSTORM would make an ideal candidate

 Demonstrate capture and storage of high energy, high current 
muon beam

 Important physics goals
 Neutrino scattering cross section measurements
 Beyond Standard Model physics including sterile neutrinos

 Two talks Friday, 4:10 PM - 4:40 PM
 (instruments and machine parallel)
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nuSTORM as a Muon Source

 nuSTORM and cooling 
demonstrator can share the 
same pion source

 Opportunity to test muon 
collider target concepts
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nuSTORM as a Muon Source

 Accelerator key systems/technology issues:
 Possibility to test muon collider target concepts
 6D ionisation cooling Demonstrator

 High-field solenoids, compact lattice
 High-gradient RF in magnetic field

 FFA storage ring can test concepts for rapid acceleration in MuC
 Beam protection and pion beam handling

 In a facility that delivers neutrino physics
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Summary

 Muon collider high priority initiative in European 
Strategy and Snowmass

 “Dream machine” for high-energy physics
 High-brightness muon source needed

 Beam needs to be cooled using ionisation cooling
 MICE built to study muon cooling

 Unprecedented single particle measurement of particle 
trajectories in an accelerator lattice

 MICE has made first observation of ionization cooling
 Growing excitement for a follow-up experiment

 nuSTORM would make an excellent muon source
 More info:

 http://mice.iit.edu
 https://www.nustorm.org
 https://muoncollider.web.cern.ch/

http://mice.iit.edu/
https://www.nustorm.org/
https://muoncollider.web.cern.ch/
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