Fermilab **ENERGY** Office of Science

D.Neuffer¹, V.Pronskikh¹, I.Fang¹, A.Liu⁴, K.Lynch², S.Mueller³, J.Popp², D.Pushka¹

¹Fermi National Accelerator Laboratory, Batavia, USA

²York College and the Graduate Center, City University of New York, New York, USA

³Helmholtz-Zentrum Dresden-Rossendorf, Germany

⁴Euclid Laboratories

NuFACT22

Design and Prototype for a Pion-production Target for Mu2e-II

Outline

- Introduction
 - Mu2e → Mu2e-II
 - Mu2e target features
 - Mu2e-II required modifications
- Laboratory Directed Research and Development (LDRD) project
 - Tested approaches
 - Simulations, etc.
 - Summary results
- Prototype with Euclid Techlabs
 - Description
 - Test results
 - Next changes
- Summary and conclusions

The Mu2e experiment and its upgrade Mu2e-II

- Mu2e searches for lepton number violation by observing the conversion of a muon into an electron² in a nucleus.
 - Create π/μ from p on target
 - $-\mu^{-}$ captured in target
 - Wait for 105 MeV e⁻ from decay
 - Background : μ⁻ → e⁻ vṽ

The Mu2e experiment and its upgrade Mu2e-II

Use Mu2e beamline and detector with minimal changes Replace ~8 kW 8 GeV beam with

>100 kW 800 MeV PIP-II beam **Requires:**

cw 800 MeV PIP-II beam

Transport to Mu2e

Optics match to 800 MeV

Target within solenoid for ~100 kW

Tevatron target was 79 kW

8-GeV (Mu2e) or 800-MeV (Mu2e-II) protons

Accelerator beamline geography

Mu2e_II vs Mu2e parameter comparison

Parameter	Mu2e	Mu2e-II	Comment
Proton Source	DR- slow extraction	PIP-II Linac	
P kinetic energy	8 GeV	0.8	
Beam power	8 kW	100 kW	Mu2e-II can be increased
Proton/s	6.25×10 ¹²	7.8×10 ¹⁴	
Pulse cycle	1.693 µs	1.693 µs	Variable for Mu2e-II
Proton rms emittance	2.7	0.25	mm-mrad, normalized
Proton geom. emitt.	0.29	0.16	mm-mrad, unnormalized
Proton energy spread	20 MeV	0.275 MeV	
Δp/p	2.25×10 ⁻³	2.2×10 ⁻⁴	
Stopped μ per proton	1.59×10 ⁻³	9.1×10 ⁻⁵	
Stopped µ per cycle	~6×10 ⁴	1.2×10 ⁵	PIP-II is cw; DR not
Stopped µ per year	10 ¹⁷	10 ¹⁸	

Target station detail

- Mu2e targets design for robotic insertion and replacement
- Must fit within ~20 cm radius of HRS shielding within solenoid
- Mu2e-II target must fit into similar hole and remote handling

Heat & Radiation Shield

Mu2e target development

- Mu2e target 8kW, 8GeV beam
 - Radiatively cooled W target
 - Supported within frame for robotic remote handling
 - Easy insertion, replacement
- Initial design hotter than desired
 - T > ~1500° C
 - Crystallization of material
 - Added fins, segmentation
 - spreads out heating, increases radiation
 - T < 1130° C

milab

Mu2e-II target design → LDRD project

• Project Title: Design of a Mu2e upgrade Target Station with the optimal physics performance for the PIP II era

Principal Investigator: Vitaly Pronskikh

• Co-Investigators (w/institutions): Jim Popp (CUNY), Kevin Lynch (CUNY), David Neuffer (Fermilab), Dave Pushka (Fermilab), Ingrid Fang (Fermilab).

Deliverables:

- Mid-2020 Mid-2021: plausible design(s) for the Mu2e-II target.
- Mid-2021 Mid-2022: prototype designed, built, and tested. Conclusions regarding feasibility and future development

Designs Under Investigation

Rotating Elements Fixed Granular with Gas Cooling "Conveyor"

Prioritizing the designs under consideration for prototyping

Pros: heating and radiation damage can be distributed over many rods

Cons: hardware (Targets plus supports plus rotation mechanism) would occupy a large space inside the bore (complicates cooling and π/μ transmission) Radiation cooling is inefficient

Pros: small space required

Cons: peak DPA (MARS15) >300/yr; gas cooling system difficult, Cannot be performed efficiently

Prioritizing the designs under consideration for prototyping

Pros: small space required; two-phase ammonia could be used for both cooling and moving elements inside conveyor; radiation damage can be distributed;

Cons: technical complexity (prototyping needed)

Based on muon stopping rate studies with MARS15 and G4beamline the optimal target lengths were determined to be: 28 balls (C target), 9 balls (W and WC targets), 19 balls (SiC); MoGRCF was studied, too. Spheres were 0.75 cm radius; tried also 0.5, 0.63 cm.

Interaction length and DPA

Radiation is reduced by increasing number of circulating spheres need at least 150 to reduce below limit. (Expect ~300 in complete recirculating target.)

Work is underway to reconcile the results of MARS15 and FLUKA DPA calculations

Energy deposition for a W target

FLUKA model

🛟 Fermilab

- MARS15/FLUKA data agreement is better than 20% for energy deposition.
- Total E_{dep} = 31.8 kW; peak DPA (Nordlund) = 330 DPA/yr (assuming fixed balls in beam, no tubing);
- Motion speed of spherical elements in conveyor is 10 cm/sec, DPA limit assumed <= 10
- (1.35 sec for an element to pass through the beam).

Thermal and mechanical ANSYS analyses: conveyor

Melting points:

3422 C for W; 2870 C for WC; 2730 C for SiC

point 1 2 3 4 5 6 7 8 9 ---W Max Total Deformation (mm) ----WC Max Total Deformation (mm)

	Tungsten/WC	Lower-density bent (Carbon or SiC)
Rotated	Requires large hardware device inside HRS	Too large to fit in HRS
Fixed granular	DPA is too high	DPA is high; lower pion production
Conveyor	Thermal and mechanical analyses are ongoing; currently looks feasible	Lower pion production; thermal analysis is ongoing; currently looks feasible

Maximum deformation must be compared to the deformation of tubing

Initial prototype design (Euclid Techlabs)

Euclid engineering team: A.Liu, E.Gomes, M.Camarena

Prototype design:

- circulates Steel balls R=1 cm
- U-turn R=15 cm; L = 245 cm.
- Racetrack shape (no beam straight section)
- Tubing slightly larger than the balls (tolerance)
- Variable velocity
- Sealable design (for future vacuum to avoid oxidation in air)
- Track actuated from two sides in gearbox
- Track is gripped in drivetrain

In MI-8 Mezzanine: test at 10--16 cm/s

Not all rollers were engaged

Mechanical tests at Fermilab

In Fermilab's MI-8 Mezzanine: test at 12.3 cm/s

Mechanical tests: observations and conclusions

The prototype, despite many simplifications, does the job

- Demonstrated stable operation at 8 cm/s, 12 cm/s, and 16 cm/s for at least half-hour without interruptions (10 cm/s initial design required 10 cm/s)
- After ~1 hour of integrated operation we saw that the traveling belt crumbles (not high-T, or rad resistant)
 Some rollers slip and do not turn
- In general, long-term uniform movement of the balls in the tube can be ensured. The design is generally feasible.
- Several further studies are necessary

Crumbs

Further studies needed and future plans

Future improvements of the prototype:

- Changing the racetrack shape to a more complex one with a straight beam interaction section (fitted to PS slot)
- Replacing the traveling belt system with a sprocket system
 - Motion stability and
- Adding gas flow for gas cooling and gas-facilitated motion
- Simulation studies needed in the support of the design:

Energy deposition in tubing must be studied to determine the thermal and radiation tolerances

• MARS15/FLUKA agreement in DPA is needed to determine the target circulation requirements during the Mu2e-II run

Comments, questions, suggestions

HICIC III LIIC UACK.

