

THE HIGH-EFFICIENCY COSMIC RAY VETO DETECTOR FOR THE MU2E EXPERIMENT AT FERMILAB

SIMON CORRODIArgonne National Laboratory

on behalf of the Mu2e CRV group

NuFact 2022 July 31 - August 6, 2022 Salt Lake City

CHARGED LEPTON FLAVOR VIOLATION

CHARGED LEPTON FLAVOR VIOLATION

Standard Model branching fraction < 10⁻⁵⁴ any observation is **new physics**

$$\sim \left(\frac{\Delta m_v^2}{m_W^2}\right)^2$$

CHARGED LEPTON (MUON) FLAVOR VIOLATION

$$\mu^- N \rightarrow e^- N$$

SINDRUM II (PSI, 2006)

 $Br < 7 \cdot 10^{-13} \ (N = Au)$ Mu2e, COMET, DeeMe

(Fermilab, J-PARC)

 $Br \leq 3 \cdot 10^{-15} - 2.6 \cdot 10^{-17}$

$$\mu^+ \rightarrow e^+ \gamma$$
MEG (PSI, 2016)

 $Br < 4.2 \cdot 10^{-13}$

MEG II (PSI)

 $\mu^+ \rightarrow e^+ e^- e^+$

SINDUM (PSI, 1988) $Br < 1.0 \cdot 10^{-12}$

Mu3e (PSI)

 $Br \le 5 \cdot 10^{-14}$ $Br \le 2.0 \cdot 10^{-15} - 1.0 \cdot 10^{-16}$

Delayed emission of a single ~105 MeV electron in an Aluminum stopping target.

$$\Gamma(\mu^- + (A, Z) \rightarrow e^- + (A, Z))$$

Signal

Delayed emission of a single ~105 MeV electron in an Aluminum stopping target.

Signal

Delayed emission of a single ~105 MeV electron in an Aluminum stopping target.

$$R_{\mu e} = \frac{\Gamma(\mu^- + (A, Z) \to e^- + (A, Z))}{\Gamma(A, Z)}$$

Delayed emission of a single ~105 MeV electron in an Aluminum stopping target.

Delayed emission of a single ~105 MeV electron in an Aluminum stopping target.

Signal

Nuclear Capture (BR = 61%)

Delayed emission of a single ~105 MeV electron in an Aluminum stopping target.

Signal

Nuclear Capture (BR = 61%)

THE MU2E BACKGROUNDS: DECAY IN ORBIT

Decay in Orbit (DIO)

Beam

Cosmic Rays

=> energy resolution

THE MU2E BACKGROUNDS: DECAY IN ORBIT

Decay in Orbit (DIO)

Beam

Cosmic Rays

=> energy resolution

THE MU2E BACKGROUNDS: BEAM

THE MU2E BACKGROUNDS: BEAM

Decay in Orbit (DIO) Cosmic Rays Beam 0.08 E Proton pulse Proton pulse POT pulse 0.07 π^{-} arrival/decay time (\times 1M) μ^{-} arrival time (\times 400) 0.06 μ decay/capture time (\times 400) Prompt background 0.05 0.04 0.03 0.02 Live Window 0.01E Signal 200 400 600 800 1200 1400 1600 1800 1000 Time (ns)

=> Pulsed beam with excellent distinction

-> the detector is live "most" of the time

THE MU2E BACKGROUNDS: COSMIC RAYS

Decay in Orbit (DIO)

Beam

Cosmic Rays

THE MU2E BACKGROUNDS: COSMIC RAYS

Decay in Orbit (DIO)

Beam

Cosmic Rays

(PS: Production Solenoid)

(PS: Production Solenoid)
4.6T
2.5T protons
2.0T

(PS: Production Solenoid) protons 2.5T 1.0T 4.6T 2.0T production target

(PS: Production Solenoid) protons 2.5T 1.0T 4.6T 2.0T production muon transport target (TS: Transport Solenoid)

(DS: Detector Solenoid)

See talk 9: "Design, construction, and vertical slice performance tests of the Mu2e straw tracker", by Richard Bonventre

COSMIC RAY BACKGROUND: EXAMPLE

Mu2e expects 1 signal-like event per day induced by cosmic rays cosmic ray (muon)

Localized hits (space and time) coincidence in multiple (3/4 or 4/4) layers trigger a (offline) ~125 ns vetoed in the signal window

4-layer scintillating 5x2 cm² counters, read-out through wavelength-shifting fibers by

4-layer scintillating 5x2 cm² counters, read-out through wavelength-shifting fibers by 2x2 mm² SiPMs

4-layer scintillating 5x2 cm² counters, read-out through wavelength-shifting fibers

by 2x2 mm² SiPMs

4-layer scintillating 5x2 cm² counters, **read-out through wavelength-shifting fibers** by 2x2 mm² SiPMs

CRV REQUIREMENTS

Goal: single event sensitivity of **2.5x10**-17 (6x10-17 90%CL) ~10¹⁸ stopped muons, 3.6x10²⁰ protons on target within 3 years of running

=> requires a **background free experiment** (expected total of 0.4, 0.2 from CR)

Cosmic Rays: 1 background event per day -> needs ~few 1000x suppression few km deep under ground or veto detector: CRV

CRV Requirements:

- efficiency of up to 99.99% is needed to keep the background to less than 1 event
- very low dead time

CHALLENGES: INEFFICIENCIES I

The maximally allowed inefficiency is 1x10⁻⁴

efficiency scales with light (photo electron) yield

aging needs to be monitored and understood well

=> extensive efforts to monitor and understand aging

CHALLENGES: INEFFICIENCIES II: HOLES AND EDGE EFFECTS

Example: No shielding at the TS opening

=> mitigation with passive absorbers (expensive)

Example: Geometry/Edge Effects

=> staggered design to minimize gaps

CHALLENGES: DEAD TIME

"Fake CR events" introduce dead time -> fake vetos

Superposition of different sources:

-> detector noise (SiPM dark counts)

-> "radiation"

PERFORMANCE

Testbeam: 120 GeV protons normally, 1m from the readout end

806 nPE distribution x=1000mm y=75mm

READOUT ELECTRONICS: FRONT END BOARD (FEB)

64 (4 x 16) channels

READOUT ELECTRONICS: FRONT END BOARD (FEB)

64 (4 x 16) channels

HDMI connecting to the CMB

64 (4 x 16) channels

HDMI connecting to the CMB

64 (4 x 16) channels

HDMI connecting to the CMB

80 MSPS Digitization TI AFE5807

64 (4 x 16) channels

HDMI connecting to the CMB

80 MSPS Digitization TI AFE5807

FPGA & DDR zero-suppressed/self-triggered, paged (event window tag) memory

64 (4 x 16) channels

HDMI connecting to the CMB

80 MSPS Digitization TI AFE5807

FPGA & DDR zero-suppressed/self-triggered, paged (event window tag) memory

Current board: Spartan 6 & LPDDR

Spartan 6: early end of life: => currently migrating to spartan 7

64 (4 x 16) channels

HDMI connecting to the CMB

80 MSPS Digitization TI AFE5807

FPGA & DDR zero-suppressed/self-triggered, paged (event window tag) memory

x 4

64 (4 x 16) channels

HDMI connecting to the CMB

80 MSPS Digitization TI AFE5807

FPGA & DDR zero-suppressed/self-triggered, paged (event window tag) memory

uC (ARM A8, 200MHz) control and housekeeping

x 4

64 (4 x 16) channels

HDMI connecting to the CMB

80 MSPS Digitization TI AFE5807

FPGA & DDR zero-suppressed/self-triggered, paged (event window tag) memory

uC (ARM A8, 200MHz) control and housekeeping

data, communication, clock/event-tags, power

x 4

64 (4 x 16) channels

HDMI connecting to the CMB

80 MSPS Digitization TI AFE5807

x 4

FPGA & DDR zero-suppressed/self-triggered, paged (event window tag) memory

uC (ARM A8, 200MHz) control and housekeeping

data, communication, clock/event-tags, power

power over ethernet (POE): 12bit DAC to fine tune each SiPM

64 (4 x 16) channels

Unique features:

- (cheap) off-the-self components, no dedicated ASICs
- Flash-gate:Lower the SiPM bias voltage: ~2V(current + after pulsing suppression)

64 (4 x 16) channels

Unique features:

- (cheap) off-the-self components, no dedicated ASICs
- Flash-gate:Lower the SiPM bias voltage: ~2V(current + after pulsing suppression)

READOUT ELECTRONICS: READOUT CONTROLLER (ROC)

24 (3 x 8) FEBs

POE

Overall Readout-System

Dynamic range: 2000
Max rate/SiPM: 1 MHz
Max rate FEB-ROC: 10 MB/s
Max rate ROC-TDC: 250 MB/s
Time resolution: ~ 2 ns

Magnetic field (FEB): ~ 0.1 T Max dose (FEB): 10¹⁰ n/cm²

Spartan6

uC

TDAQ (DTC): fiber communication (3.125 GBPS), copper clock/timing (event-tag)

READOUT ELECTRONICS: READOUT CONTROLLER (ROC)

24 (3 x 8) FEBs

POE

Overall Readout-System

Dynamic range: 2000
Max rate/SiPM: 1 MHz
Max rate FEB-ROC: 10 MB/s

Max rate ROC-TDC: 250 MB/s

Time resolution: $\sim 2 \text{ ns}$ Magnetic field (FEB): $\sim 0.1 \text{ T}$

Max dose (FEB): 10¹⁰ n/cm²

Spartan6

uC

TDAQ (DTC): fiber communication (3.125 GBPS), copper clock/timing (event-tag)

See poster 103: "A High Rate Readout System for a High-Efficiency Cosmic Ray Veto for the Mu2e Experiment", by Simon Corrodi

STATUS

CRV module production (68/83, 82%)

See poster 86: "Fabrication of a Cosmic Ray Veto System for the Mu2e Experiment", by Craig Group

STATUS

CRV module production (68/83, 82%)

See poster 86: "Fabrication of a Cosmic Ray Veto System for the Mu2e Experiment", by Craig Group

CRV Electronics:

- Vertical Slice Test: completed,
 DAQ integration ongoing
- FEB: Spartan 6->7 migration
- ROC: ready for production

STATUS

CRV module production (68/83, 82%)

See poster 86: "Fabrication of a Cosmic Ray Veto System for the Mu2e Experiment", by Craig Group

CRV Electronics:

- Vertical Slice Test: completed,
 DAQ integration ongoing
- FEB: Spartan 6->7 migration
- ROC: ready for production

Mu2e Schedule

- detector commissioning through late 2024
- Run1 data taking 2025/2026 until LBNF/PIP-II shutdown
- Resume data collection in 2029 after long shutdown

Dune: Temporary Muon Spectrometer (TMS)

- PS Extrusions
 - + wavelength shifting fibers
- very similar digitization (TI AFE)

Dune: Temporary Muon Spectrometer (TMS)

- PS Extrusions
- + wavelength shifting fibers
- very similar digitization (TI AFE)

Dune: **D**etector electronics for **A**cquiring **PH**otons from **NE**utrinos (DAPHNE)

- inspired by mu2e FEB design
- => SBND: plans to use DAPHNE and mu2e-ROC

Dune: Temporary Muon Spectrometer (TMS)

- PSExtrusions + wavelength shifting fibers
- very similar digitization (TI AFE)

Dune: **D**etector electronics for **A**cquiring **PH**otons from **NE**utrinos (DAPHNE)

- inspired by mu2e FEB design
- => SBND: plans to use DAPHNE and mu2e-ROC

LDMX (Light Dark Matter eXperiment):

- quad counter, 1 fiber/50cm

Dune: Temporary Muon Spectrometer (TMS)

- PSExtrusions + wavelength shifting fibers
- very similar digitization (TI AFE)

Dune: **D**etector electronics for **A**cquiring **PH**otons from **NE**utrinos (DAPHNE)

- inspired by mu2e FEB design

=> SBND: plans to use DAPHNE and mu2e-ROC

LDMX (Light Dark Matter eX

- quad counter, 1 fiber/50cm

See talk 88: "LDMX: The Light Dark Matter eXperiment", by Matt Solt

Dune: Temporary Muon Spectrometer (TMS)

- PSExtrusions + wavelength shifting fibers
- very similar digitization (TI AFE)

Dune: **D**etector electronics for **A**cquiring **PH**otons from **NE**utrinos (DAPHNE)

- inspired by mu2e FEB design
- => SBND: plans to use DAPHNE and mu2e-ROC

LDMX (Light Dark Matter eX

- quad counter, 1 fiber/50cm

See talk 88: "LDMX: The Light Dark Matter eXperiment", by Matt Solt

Exploring the Great Pyramid Experiment (EGP)

- triangular quad counter
- also: potentially Mu2e-II

LDMX

Dune: Temporary Muon Spectrometer (TMS)

- PSExtrusions + wavelength shifting fibers
- very similar digitization (TI AFE)

Dune: **D**etector electronics for **A**cquiring **PH**otons from **NE**utrinos (DAPHNE)

- inspired by mu2e FEB design
- => SBND: plans to use DAPHNE and mu2e-ROC

LDMX (Light Dark Matter eX

- quad counter, 1 fiber/50cm

See talk 88: "LDMX: The Light Dark Matter eXperiment", by Matt Solt

Exploring the Great Pyramid Experiment (EGP)

- triangular quad counter
- also: potentially Mu2e-II

See talk 263: "Mu2e-II: next generation muon conversion experiment", by Yuri Oksuzian

LDMX

SUMMARY

- The Mu2e CRV is a detector system based on scintillator counters with embedded wavelength-shifting fibers read out by SiPMs...
- ...with an efficiency above 99.99% and low dead times.
- The detector is inexpensive and only uses modest resources to build
- A fast, inexpensive readout system with POE has been designed
- Flexible design: that is used and copied for multiple experiments
- On track to be completed (KPP) by 2024.

