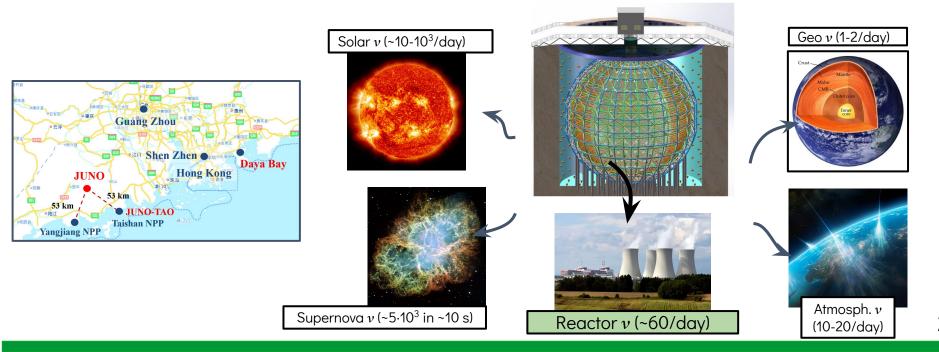
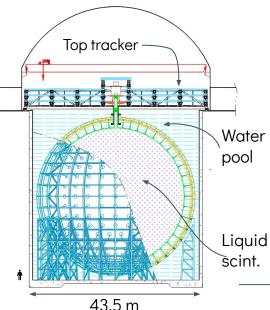
Calibration strategy for the JUNO experiment

Dr. Davide Basilico on behalf of the JUNO collaboration University of Milan & INFN Milan

NuFact 2022 - 2022 August 05 - Snowbird





Istituto Nazionale di Fisica Nucleare

Jiangmen Underground Neutrino Observatory

A large, radiopure, multi-purpose <u>liquid-scintillator</u> detector for <u>neutrino mass ordering</u> determination as main physics goal with <u>reactor anti-v_e (medium baseline)</u>, located in Southern China

Detector design

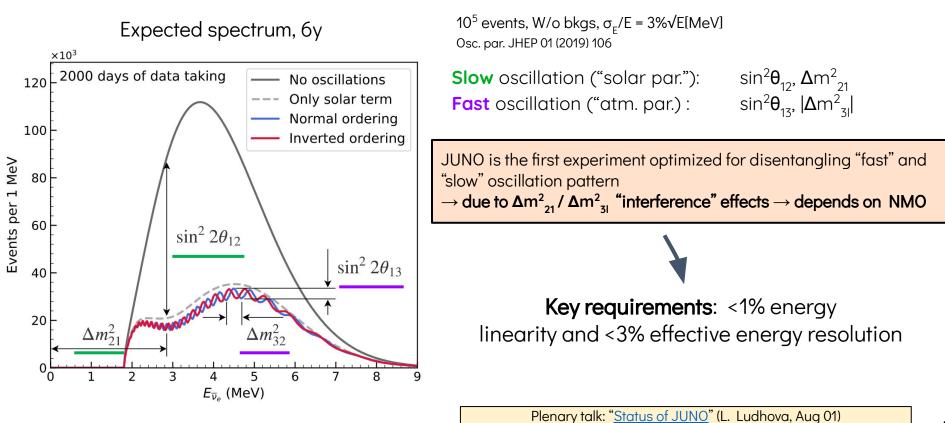
Largest ever liquid scintillator (20 kt), equipped with ~43600 PMTs (25600 small PMTs and ~18000 large PMTs) to collect scintillation light

Underground (1900 m.w.e) + passive shielding layers \rightarrow external backgrounds suppression

Key requirements:

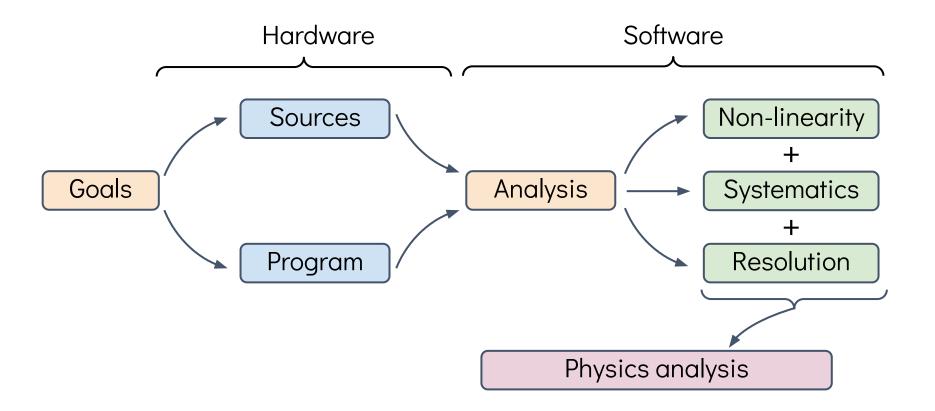
- 1. Large mass: 20kt of ultrapure liquid scintillator
- 2. Low background levels:

internal radiopurity + passive shielding

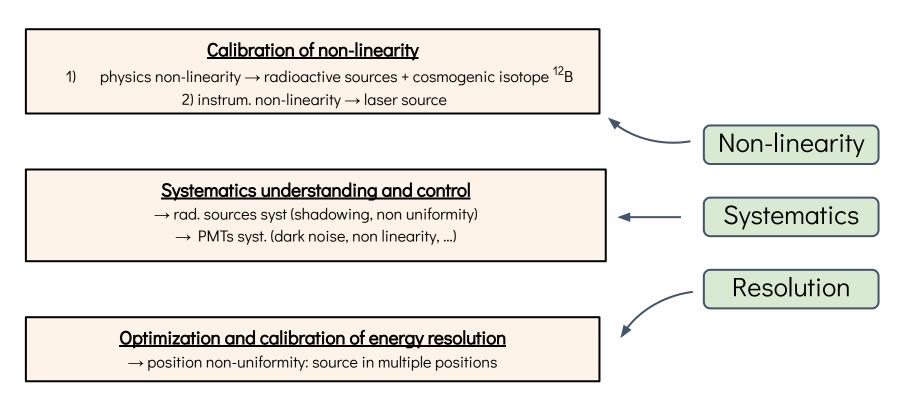

3. <u>High energy resolution</u>:

Scintillator light yield (~10⁴ phot/MeV) + PMTs coverage (75%) and Quantum Efficiency (~35%)

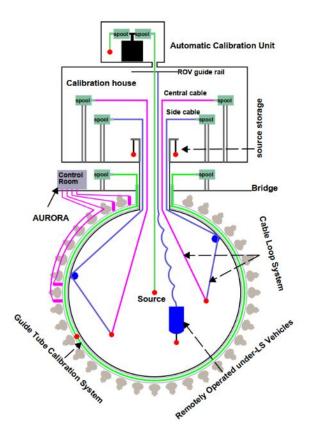
-	Experiment	Daya Bay	Borexino	KamLAND	JUNO	
	Target mass [t]	160	~300	~1000	~20000	
	Photo electrons / MeV	~160	~500	~250	1345	
	Energy resolution @MeV	~8.5%	~5%	~6%	~3%	
	Photocathode coverage	12%	34%	34%	75.2%	
	Energy cal. Uncert.	0.5%	1.0%	2.0%	<1%	J
						/


Plenary talk (Aug 05): "Challenges in the construction of large neutrino detectors: the JUNO case", M. Montuschi

Neutrino mass ordering analysis



WG1 talk: "<u>Oscillation Physics Potential of JUNO</u>" (J. Zhang, Aug 05)


Calibration strategy

Calibration strategy

Hardware & sources

- 1D: Automatic Calibration Unit (ACU)
- 2D: Cable Loop System (CLS)
- 3D: Remotely Operated under-LS Vehicles (ROV)
- Boundary: Guide Tube Calibration System (GTCS)

Calibration sources:

- 1. Radioactive sources (F. Zhang et al 2021 JINST 16 T08007)
- 2. Laser source (Y. Zhang et al 2019 JINST 14 P01009)

Radioactive sources:


- γ, e+, n
- E_{min} = 0.662 MeV

Sources/Processes	Type	Radiation
^{137}Cs	γ	$0.662{ m MeV}$
$^{54}\mathrm{Mn}$	γ	$0.835{ m MeV}$
60 Co	γ	$1.173 + 1.333 \mathrm{MeV}$
40 K	γ	$1.461\mathrm{MeV}$
$^{68}\mathrm{Ge}$	e ⁺	annihilation $0.511+0.511{\rm MeV}$
241 Am-Be	n, γ	neutron + $4.43 \text{MeV} (^{12}\text{C}^*)$
$^{241}\text{Am-}^{13}\text{C}$	n, γ	neutron + $6.13 \text{MeV} (^{16}\text{O}^*)$
$(\mathrm{n},\gamma)\mathrm{p}$	γ	$2.22{ m MeV}$
$(n,\gamma)^{12}C$	γ	$4.94{\rm MeV}~{\rm or}~3.68+1.26{\rm MeV}$

Hardware & sources

- 1D: Automatic Calibration Unit (ACU)
- 2D: Cable Loop System (CLS)
- 3D: Remotely Operated under-LS Vehicles (ROV)

Optimization of energy resolution

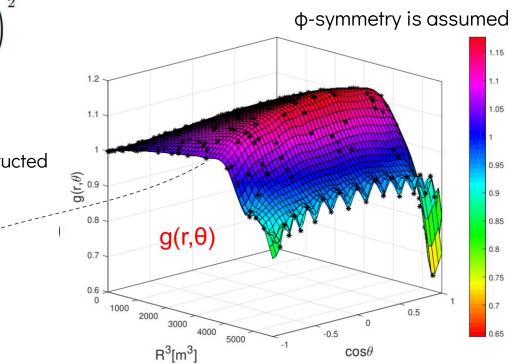
$$\frac{\sigma_{E_{\rm vis}^{\rm prompt}}}{E_{\rm vis}^{\rm prompt}} = \sqrt{\left(\frac{a}{\sqrt{E_{\rm vis}^{\rm prompt}}}\right)^2 + b^2 + \left(\frac{c}{E_{\rm vis}^{\rm prompt}}\right)^2}$$

Effective parametrization for energy resolution \rightarrow each terms cover multiple effects, but mainly:

- "a" term \rightarrow Poisson statistical fluctuations (~2.6%)
- "b" term \rightarrow energy non-uniformity (~0.8%)
- "c" term \rightarrow background noise term (~1%)

Assumptions	a	ь	с	$\tilde{a} = \sqrt{a^2 + (1.6b)^2 + (\frac{c}{1.6})^2}$
Central IBDs	2.62(2)	0.73(1)	1.38(4)	2.99(1)
Ideal correction	2.57(2)	0.73(1)	1.25(4)	2.93(1)
Azimuthal symmetry	2.57(2)	0.78(1)	1.26(4)	2.96(1)
Single gamma source	2.57(2)	0.80(1)	1.24(4)	2.98(1)
Finite calibration points	2.57(2)	0.81(1)	1.23(4)	2.98(1)
Vertex smearing(8 cm/ $\sqrt{E(MeV)}$)	2.60(2)	0.82(1)	1.27(4)	3.01(1)
PMT QE random variations	2.61(2)	0.82(1)	1.23(4)	3.02(1)

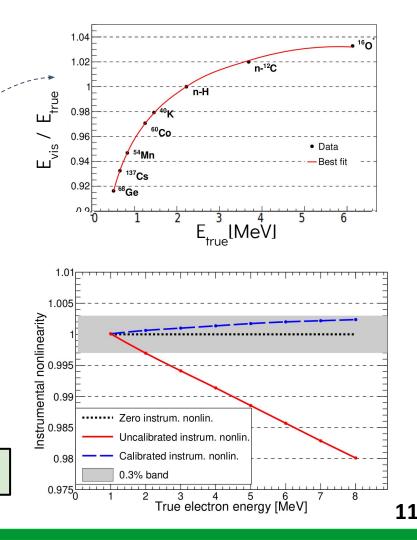
Non-uniformity is corrected by calibrations with radioactive sources located in multiple positions → radial-angular function to correct reconstructed energy


("optimizing energy resolution")

Optimization of energy resolution

$$\frac{\sigma_{E_{\rm vis}^{\rm prompt}}}{E_{\rm vis}^{\rm prompt}} = \sqrt{\left(\frac{a}{\sqrt{E_{\rm vis}^{\rm prompt}}}\right)^2 + b^2 + \left(\frac{c}{E_{\rm vis}^{\rm prompt}}\right)^2}$$

Non-uniformity is corrected by calibrations with radioactive sources located in multiple positions \rightarrow radial-angular function g(r, θ) to correct reconstructed energy


* marks calibration points

Non-linearity optimization

- **Physics nonlinearity** = non-linearity between particle energy and scintillating/Cherenkov photon
 - LS property, position independent
 - γ calibration sources ------
 - + ¹²B cosmogenic isotope
- **Instrumental nonlinearity** = nonlinearity between photon and charge for each channel.
 - PMT instrumentation property
 - Position dependent
 - Laser calib. source
 - \rightarrow dual calorimetry technique \rightarrow compare LPMTs and sPMTS response

Goal: determination of e+ non-linearity at <1% level

Calibration program

Program structured following three time periods

	Source	Energy [MeV]	Points
	Neutron (Am-C)	2.22	250
1) Comprehensive calibrations	Neutron (Am-Be)	4.4	1
· · · · · · · · · · · · · · · · · · ·	Laser	/	10
 basic understanding of the CD performance 	⁶⁸ Ge	0.511×2	1
- At the beginning of data-taking	► ¹³⁷ Cs	0.662	1
	54 Mn	0.835	1
- > 250 points, ~48h	⁶⁰ Co	1.17 + 1.33	1
	40 K	1.461	1
	Total	/	/
 2) Monthly calibrations - Monitor non-uniformity - ~100 points, ~11h 	ACU CLS Ne	Source eutron (Am-C) Laser eutron (Am-C) eutron (Am-C)	Points 27 27 40 23
	Total		
3) Weekly calibrations - track major changes of the detector \rightarrow variations in the light yield of the LS, PMT gains, and electronics	Source Neutron (Am-C) Laser	Energy [MeV]) 2.22 /	Points 5 10
- central axis, 0.1% precision on gamma peaks	Total	/	/
- cermaraxis, 0.1% precision on gamma peaks			

Summary

• JUNO calibration paper:

"Calibration strategy of the JUNO experiment". J. High Energ. Phys. 2021, 4 (2021)

- Detailed and precise calibrations are essential to achieve each of the JUNO physics goal
- A multi-dimensional calibration system for Central Detector has been created
 → employed sources: γ, neutron, UV laser
 - \rightarrow program structured in three different time periods (comprehensive, monthly, weekly)
- **Goals**: determination of e+ non-linearity at <1% level + optimization of energy resolution at <3% level, within the IBD energy range of interest

Thank you!

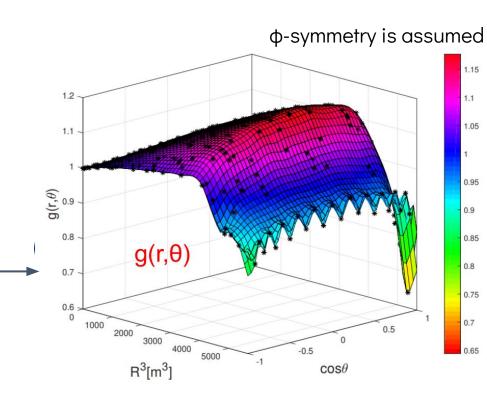
Thank you!

JUNO NuFact 2022 talks:

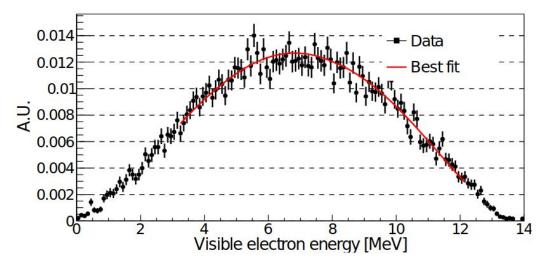
"Status of JUNO", L. Ludhova, plenary, Aug 01

"<u>Challenges in the construction of large neutrino detectors: the JUNO case</u>", M. Montuschi, plenary, Aug 05 "<u>Oscillation Physics Potential of JUNO</u>", J. Zhang, WG1, Aug 05

"Calibration strategy of the JUNO experiment". J. High Energ. Phys. 2021, 4 (2021)


Optimization and calib. of energy resolution

$$\frac{\sigma_{E_{\rm vis}^{\rm prompt}}}{E_{\rm vis}^{\rm prompt}} = \sqrt{\left(\frac{a}{\sqrt{E_{\rm vis}^{\rm prompt}}}\right)^2 + b^2 + \left(\frac{c}{E_{\rm vis}^{\rm prompt}}\right)^2}$$


Non-uniformity is corrected by calibrations with radioactive sources located in multiple positions $\rightarrow g(r,\theta)$ function

- g(r, θ): radial-angular correction function = light yield in a given position relative to that at the center. - ΔQ_{DR} = charge bias induced by dark rate = 185 p.e.

$$E_{\rm vis}^{\rm prompt}(r,\theta,\phi) = ({\rm PE}_{\rm tot} - \Delta Q_{\rm DR})/Y_0/g(r,\theta,\phi)$$

Cosmogenic isotope 12B

12B decays via β -emissions with a Q value of 13.4 MeV and a lifetime of 29 ms, with more than 98% into the ground state of 12C. Therefore it offers complementary constraints to fnonlin(Ee) at the high energy end. 12B events can be cleanly identified by looking for delayed high energy β event after an energetic muon