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ICARUS and SBN at Fermilab

*"|CARUS is the Far Detector in the Short Baseline Neutrino (SBN) Program

"SBN program physics: B
= eV-scale sterile neutrino search ICARUS e
= GeV-scale neutrino cross section measurements

=Single Detector BSM physics searches
ICARUS MicroBooNE SBND

110 m, 112 t
600 m, 470 t |

.....

\ NuMI beam
\ (MINOS NoyA

1\
booster ||
to:South Dakota ' peutrino ? \

(LBNE) b\ X5
e VR d 12 g Y

muons huclei
kaons
g, N\ Fojeci
| Booster Beam o _,,‘;-,.‘
‘,‘..‘.w’. X ; '!"’.'. - - e s w=- W - ‘ N 7 ;, TevatmpRing
3 Liquid- Argo Time- Prajectlon-tﬁamber (LArTPC) Detectors oy = A || aeaa

GRAY PUTNAM UNIVERSITY OF CHICAGO



Neutrino Images from the ICARUS LArTPC

Electron neutrino Muon neutrino
Candidate Candidate

NuMI Data

BNB Data

https://news.fnal.gov/2021/05/icarus-gets-ready-to-fly

at FNAL: | e Each image is from one TPC
| L = a4 inside each cryostat
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ICARUS: A Liquid Argon Time Projection Chamber (LArTPC)

What measurements can you do with
charge calorimetry in a LArTPC?

Electron neutrino
Candidate

ulp, ely
Separation

NuMI Data

Electron
showers
Low-energy

narticles from vs

Low-energy

electron tracks

Very low energy
electron blips
A LArTPC is a calorimeter for measuring
charged particles produced in v interactions
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Using Charge at DUNE: Low Energy Electrons

Supernova neutrino burst detection with the deep underground
neutrino experiment

DUNE Collaboration

DUNE as the Next-Generation Solar Neutrino Experiment

1 1,2,5.8
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Xenon-Doped Liquid Argon TPCs as a Neutrinoless Double Beta Decay Platform
A. Mastbaum,! F. Psihas,? and J. Zennamo?
' Rutgers University, Piscataway, N.J, 08854, USA

2Fermi National Accelerator Laboratory (FNAL), Batavia, IL 60510, USA
(Dated: March 29, 2022)

Physics goals for DUNE include a variety of signatures from low energy electrons,
which would apply calorimetric energy measurements.
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How Well Can We
Calibrate LArTPCs?




Cosmic Muons as a Standard Candle

" In LArTPC experiments, depositions from cosmic muons are used as a
“standard candle” to calibrate the energy scale

Stopping
Cosmic u

The known profile of charge depositions along a
muon is used to measure channel gain to obtain the
calorimetric energy scale

Calorimetric Energy:
Q[ADC]->Ql[e"]->E

Gain External

Calibration M ¢ |
alipration easuremen ICARUS Data

(Recombination)



Accuracy of Energy Measurements

" In LArTPC experiments, depositions from cosmic muons are used as a
“standard candle” to calibrate the energy scale

" The predicted ionization per length of a cosmic muon combines the Bethe-
Bloch energy loss with a recombination model to map energy to charge

d
How well do we know the most-probable d—g from a

1GeV muon deposition with 1ms of drift time?

CV with Uncertainty | Percent Impact
on dQ/dx

ArgoNeuT Collab, JINST (2013)

Recombination Modeling a =0.93 4+ 0.02, 3.8 - s Ina+ip

B =0.212 + 0.001 Recombination model: x - W8
Mean Excitation Energy (Ip) 188 =17 eV 1.0 ICRU 37, plus uncertainty from GAr v. LAr
Transverse Diffusion (D) 8.8 + 4.4 cm?/s 1.0 Extrapolation from longitudinal diffusion

through Wannier relation
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Accuracy of Energy Measurements

" In LArTPC experiments, depositions from cosmic muons are used as a
“standard candle” to calibrate the energy scale

" The predicted ionization per length of a cosmic muon combines the Bethe-
Bloch energy loss with a recombination model to map energy to charge

d
How well do we know the most-probable d—g from a

1GeV muon deposition with 1ms of drift time?

CV with Uncertainty | Percent Impact
on dQ/dx

Recombination Modeling a =0.93 4+ 0.02, 3.8 - s Ina+ip

f =0.212 + 0.001 Recombination model: —— = W B
Mean Excitation Energy (I,) 188 + 17 eV 1.0 ICRU 37, plus uncertainty from GAr v. LAr
Transverse Diffusion (D7) 8.8 + 4.4 cm?/s 1.0 Extrapolation from longitudinal diffusion

ArgoNeuT Collab, JINST (2013)

through Wannier relation
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The Landau Energy Loss Distribution Depends on Wire Thickness

* The distribution of energy loss is a Muon Energy Loss Changes
Landau distribution with Detector Thickness

o . i Mean :
*The peak of a Landau distribution has | dE/dx me'gnlescsm
a dependence on the length of the £ C 1em
particle observed by the wire E i —— 10cm

o I

* As the thickness goes up, the most- = | Ey=1GeV
probable-value (MPV) of energy loss goes | LAr

up 1.5 2.0 2.5 3.0 3.5 4.0
dE/dx [MeV/cm]
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Diffusion Changes the Thickness!

WITH DIFFUSION WITHOUT DIFFUSION
w(x): weight function
which gives a weight © e = ® i © w0 T ® E;
to how much ionization (———F +—
charge a wire will see at
each point along the . .

muon trajectory.

From: G Putham and .
D Schmitz u M
(arxiv: 2205.06745) 0 = V2Drtgrife

e Diffusion transverse to the drift direction (and the wire direction) thickens the length
of the muon that each wire is sensitive to — this changes the MPV energy loss
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Energy Scale Calibration
at [CARUS




Energy Scale Calibration Procedure

= Step 1: normalize the detector response in the drift direction
= This removes detector effects such as argon impurities which attenuate the signal

= Step 2: calibrate the energy scale
= Examination of the systematic uncertainties and results at ICARUS

" For both steps, we have devised a procedure which addresses possible biases
from diffusion
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Normalizing the Drift Direction Detector Response

* Impurities in the argon attenuate ionization electrons as a function of drift time

* To remove this effect: look at dQ/dx from cosmic muons, make it flat across the

detector
Cathode

Anode-Crossing
u, for
normalization

TPC

GRAY PUTNAM

0
Larift
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Drift Direction Response Normalization with Diffusion

= Diffusion changes the underlying dE/dx of muon ICARUS Monte Carlo
depositions across the drift direction £181{ 1 Wire (hit-by-hit)
= \WWe can remove this effect by coarse-graining the g 1.80) Measurement
detector 3 1791
g 1.78- '
Diffusion Width 2 1.77 Underlying d€/dx
=~ w(X) g changes across drift
Wire Width 200 400 600 800
1 Channel Hit Time s
o = i
§°% Flat dE/dx
Diffusion Width %1.985-
<< k]
Wire W|dth W(X) -E 1.980
> 10 Wire (coarse-grained)
9 Channels 2 1.975{measurement
000600000 200 400 600 800
Hit Time [us]
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Drift Direction Response Normalization with

Diffusion e
. . . 650 -
= Diffusion changes the underlying dE/dx of muon E 6251
depositions across the drift direction 3600
= \WWe can remove this effect by coarse-graining the g %75
© 550

detector >
s 525
. . ) 500

Diffusion Width
~ w(x) 475
Wire Width —-0.0725
1 Channel ~0.07501
o The difference in A-% ~0.0775
thickness (and g —0.0800
Diffusion Width thus dE/dx) S _0.0825-
< narrows across >

Wire Width w(x) the drift. v = ~0.0850]
—0.0875 -
9 Channels ~0.0900-
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ICARUS Commissioning Data
TPC WW Run 7897

—— 1-Wire
—+— 10-Wire

1 (1-Wire - 10-Wire) / 10-Wire

/\
//
/’///
200 400 600 800
Drift Time [us]
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Energy Scale Calibration Procedure

* After normalizing detector response, we calibrate the energy scale by fitting
to the dQ/dx profile of stopping cosmic muons

*Bin hits in terms of: residual-range (momentum),
track angle, and drift time RR?,p°,t°

Cath Ode Residual Range
t I Calibration

dQ/dx [e~/cm]

L)
L3

[
¥33 Ty i3 3
iﬂin R R KRR )

|CARUS Data Residual Range

dQ/dx [ADC/cm]

Stopping Bragg , RR?,p?, t*
Cosmic u T _Peak Stopplng M, Binning hits b ual "
. . inning hits by residual-range (to
Hem Michel e for Calibration obtain momentum) and
thickness selects for a single peak
dE/dx to calibrate to.
TPC febeto cal
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Example dQ/dx Profile Data - Tpo
Xa p e X O I e a a c 620 - 700 < tyrire < 800 MS
S 0.3 < pitch < 0.4cm
<Dn: Gain: 85.3+2.0 e~ /ADC
6301 TPC WE = 610-
E 600 < tyrre < 700 MS o
c .
O s BTG S
ommissioning 2 ain: 85.3+2.0e > 600 -
Dats < & 0007 pRELIMINARY t
-CQY 610 PRELIMINARY —— Fit w/ Systematic Pulls ¢ Data
TPC WE > { 100 150 200 250 300
= 0007 ; { { } Residual Range [cm]
—— Fit w/ Systematic Pulls ¢ Data 630
590 - . . . , , _ TPC WE
100 150 200 250 300 c 800 < tgrirt < 900 us
Residual Range [cm] 5 620 - 0.3 < pitch < 0.4cm
a) Gain: 85.3+2.0 e~ /ADC
. . . . <
= Fit across all drift bins, with a separate % c1o.
gain in each TPC and “pulls” for  tpcenumeration: 8
. >
[a
SYStemathS el el bl e =600 PRELIMINARY }
WW  WE EW  EE —— Fit w/ Systematic Pulls ¢ Data
100 150 200 250 300

Cryo. West Cryo. East Residual Range [cm]
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Calibration Fit Results

Parameter Prior Posterior Posterior ICARUS

o cv cv LG Commissioning
L~ Recombination a 093  0.02 0.948 0.010
@ ——— Data
o Recombination B, r 0.212  0.005 0.212 0.005
(@) ™ 1
& | [em3/gllem/kV]
— 5 Ay
© = Transverse Diffusion 8.8 4.4 9.1 2.2 v |
= D 2 Qf‘l’g
% r [cm?/s] &QQ_
) Mean Excitation Energy 188 17 194 15 -

L IO [eV] § o ]

— Q A 2
2 [ Gain TPC EE [e/ADC] 83.4 2.0 =l %
S 8 o1
3 Gain TPC EW [e/ADC] 81.8 2.0 N -
S — EOIC RO A AN
2} Q" Q7 QO O .
© Gain TPC WE [e/ADC] 85.3 2.0 = Gain TPC WE
% P e o3 - Strong correlation between gain and
T ‘ ‘ recombination a (¢ determines

behavior near the MIP dE/dx).
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Marginalize Over Recombination

= By leveraging the correlation between gain and ICARU? o
recombination in our dataset, we can lower the Commissioning
systematic uncertainty in dE/dx —— Data

=i.e.: marginalize over gain and recombination together

0"0} -

_ % ,}«9'

. o |

101 Limited by ~4% —— Without Correlation o‘”;_
uncertainty in —— With Correlation ¥

recombination

Gain TPC WE

O 1 . =
SR 4 L
%b‘- - 7: -.‘ "l_

'Q '<’) 'Q '°> 'Q "b '<o ' O '\ b‘ '\ Q
D o> 07 Q” Q7 AN AV % ¥ v O
09 anQg 09 Q"L 0”1' Qr’l' Qr‘b

Beff Gain TPC WE

yst. Uncertainty in dE/dx [%]
o

- ICAR mmissionin : :
Limited by ~1% 2 DcataUS Commissioning | strong correlation between gain and
uncertainty from @ __t—— : y : : " = recombination a (¢ determines
mean excitation energy, dE/dx [MeV/cm] behavior near the MIP dE/dXx).

transverse diffusion
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Closure Test with Energy Reconstruction

. . L 300001 N
= Compare calorimetric to range kinetic Double Gaussian Fit:
energy reconstruction for the stopping =~ 2°900] Jldth-L:47%
muon dataset g 200009 mTmmTmme
o | Width-2: 14.5%
- Ir—E 15000 Bias-2: 0.8%
30000 - 1 L1 CV 100001 ICARUS
- ] [ +1o Commissionin
| CV Bias: 0.3% . g
250007 o Bias: 2.1% 1| | [ -1o 5000 - Data
4 20000 - -1o Bias: -1.4% |
| . | |
%‘ré 150004 H L -0.4 -0.2 0.0 0.2 0.4
= N | ICARUS (Cal. E- Range E) / Range E
100007 | [} Commissioning| = 4.7% resolution in bulk of distribution (2%
5000 )_EEE_ —% Data intrinsic resolution from range)
0 , , - = Bias within 1o range expected from
-04 -0.2 00 0.2 0.4 systematic uncertainties

(Cal. E- Range E) / Range E
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Looking Forward: We Need More Measurements

ArgoNeuT Collab, JINST (2013)
x10°

—

protons and deuterons
o |obs|erve|d by| Arg|oNe|uT |

6 8 10 12 14 16

140

120

" This procedure works well inside the (cosmic S|t
() dataset we have, but will it generalizeto ~ §% ¢z . l
others? F , 1
= ArgoNeuT recombination found evidence for 240 . i b
angular variations in recombination — 220 P
" Could there be particle-type dependence in ?ZZ— : d; . dE
recombination (at the percent level)? wob |, ax OBAINStexpected  from

~ -

ey (MRviom)

" To obtain the best possible energy measurements, we need to better

understand the argon
= At ICARUS we can measure recombination and diffusion
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Conclusion

= Accurate and precise energy measurements are needed to unlock
the physics potential of SBN and DUNE

= Systematic uncertainties in liquid argon properties limit the
accuracy of calibrating the energy scale

= One of these, transverse diffusion, plays a role not appreciated in
LArTPC experiments that we are now accounting for in ICARUS

" In ICARUS, we’ve implemented a calibration procedure that limits
the effects of these systematic uncertainties

" Looking forward, more measurements of LAr properties are needed
to get the best possible energy measurements
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Energy Loss by Elastic Scattering

*Charged particles lose energy in elastic collisions with atomic electrons

*Above the mean excitation energy, this is described by the Rutherford
formula:

do 1 —B?T/T 4
Pe T & T2

Due to the power-law behavior of Rutherford scattering, muons lose much of
their energy in a small number of large energy-transfer collisions (delta rays)

Mean: ~ [ dT T— p.-- diverges at low T -> atomic effects important

. d . .
Variance: ~ [ dT T? —J — Pe-- converges at low T -> delta rays determine variance
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Using Charge at SBN: Low Energy Protons

SBND Simulation

Charge-based Vu CC with = 1p .
reconstruction lowers ' /\//\/\ ngher energy
the proton - protons are
identification :
threshold, which can ' traCkEd
Improve neUtrIno . - (Plgg;%r:):gaggsdrec. algorithms)
energy and topology P oman o & var :
reconstruction . — Combined -
20 40 60 80 ' ICARUS MC
Leading Proton Kinetic Energy [MeV] »
New Algorithm: ICARUS MC |
use charge at
vertex to identify It
protons below - 100MeV
tracking threshold
~ proton
— 13 c¢m
1.5 ——
. 20MeV proton
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How Well Can We Measure E using Q in LAr?

* Developments in LArTPC technology (cold electronics, high argon
purity) increasingly provide excellent charge measurements

* How well can we turn those measurements of charge into energy?

Precise— No Precise— No Precise — Yes Precise — Yes
Accurate — Yes Accurate— No Accurate— No Accurate — Yes

How accurately and precisely does charge measure energy in liquid argon?

GRAY PUTNAM UNIVERSITY OF CHICAGO 27




Precise — Yes
Accurate - Yes

Energy Resolution with Charge in LAr [P o

= Charged particles traversing argon create a cascade of delta rays

" The same energy loss across a wire can be produced by different
spectra of delta rays, which recombine differently

= This produces a resolution effect in charge measurements!!

Liquid Argon TPC

Sense
U670 V wire plane waveforms
/

Charged Particles

Z

Cathode
PFNQe

''''''
/[
//7

e - 7

Y wire plane waveforms
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Energy Resolution with Charge in LAr

= Charged particles traversing argon create a cascade of delta rays

" The same energy loss across a wire can be produced by different
spectra of delta rays, which recombine differently

= This produces a resolution effect in charge measurements!!

escape

>0

radiative decay

Ar* —— Ar,*

Bi-excitonic Penning
quenching quenching
( (

high-dQ/dx) high-dQ/dx)

>V

Ar Ar+Ar*
(+ heat) (+ heat)

lonization electrons recombine into exited
Ar states along each ionization column.
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Precise — Yes
Accurate - Yes

Energy Resolution with Charge in LAr o

= Charged particles traversing argon create a cascade of delta rays

" The same energy loss across a wire can be produced by different
spectra of delta rays, which recombine differently

= This produces a resolution effect in charge measurements!!

30 T T T T T T

N
[+ ]
T

Line: resolution predicted ]
by resolution induced by ]
delta rays ‘

20

FWHM Resolution (%)
>
T
|

1 { |

ol 1 ] ]
0 2.0 4.0 8.0
Electric Field (kV/cm)

FIG. 3. A fit of Eq. (3) to the measured resolution of a 976-
keV electron in liquid argon (Ref 12).

Thomas, Imel, and Biller PR A (1988)

8.0 10.0 12.0
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Can Resolution be Improved for DUNE?

= Collecting both the charge and light from energy depositions

could remove the resolution from recombination

Projected improvement
in energy resolution using
Q+L from LArIAT

There is not a significant
improvement at the
projected DUNE light yield
(5 pe / MEV)

Improvement in resolution [%]

W Foreman et al., PR D (2020)

60

50

40

30

20

-10

:_ Isolated electrons e 10 pe/MeV
- S/N =30 — - 20 pe/MeV

—— 100 pe/MeV
T L1 1 | | L 1 1 1 E L 1 1 | | L1 1 | ’ | 1 | |
5 10 15 20 25 30 35

GRAY PUTNAM

True electron energy [MeV]

UNIVERSITY OF CHICAGO

... however, adding a
photosensitive dopant to the
argon in DUNE would increase
light-yield by turning it into
charge collection.

Suggested by A Mastbaum, F Psihas, and J
Zennamo (arxiv:2203.14700)
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Electron Lifetime Result on Calibration Dataset
TPC;: —+—EE —F+—EW —— WE —— WW

_ (P:Iann?/s ) ICCARU§ S 0.075 =
2 6000- ryo. Wor ommissioning Data o
— >
2 %
£ 5000 =
2 o
- =
§ 4000 | @r
5 5
£ 3000 : 7k1,|/ 10.150 2
-0.175>
Error on lifetime T - - T - -0.200 TPC Enumeration:
is systemati 5 o) ‘) oY 6 oY 6 oY 6
l:f:g/;i:;?nlc ,\/'\,\’\:\'\,’7«'& 'L'\,LQ\',L '\'\’,L ’L’L ’L; ’57/ ’5"\’ ¢ TPc | TPC TPC
(uncorrected) 10’7/ ,LQ’L ,LQ’L ,LQ’L ,LQ’L ,LQ’L ,LQ’L ,LQ’L ,LQ’L WW  WE EW  EE

field distortions. Cryo. West Cryo. East

Run Date
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Example dQ/dx Profile Data
Xa p e X rO I e a a e 700 < tyrife < 800 us
S 0.3 < pitch < 0.4cm
2 630 1 Gain: 83.44+2.0 e~ /ADC
640 - TPC EE <
€ 600 < tgrire < 700 ps S
ICARUS S 0.3 < pitch < 0.4cm g 620 -
Commissioning £ 630 Gain: 83.44+2.0 e~ /ADC >
g 620 - PREL Y 6101 —— Fit w/ Systematic Pulls ¢ Data
TPC WE 3 b 100 150 200 250 300
o .
= 610 } Residual Range [cm]
—— Fit w/ Systematic Pulls ¢ Data
. . . . , . 640 TPC EE
100 150 200 250 300 = 800 < tqrift < 900 us
Residual Range [cm] L\“; 0.3 < pitch < 0.4cm
2 £30. Gain: 83.412.0 e~ /ADC
" Fit across all drift bins, with a separate x
e 7 ” o
gain in each TPC and “pulls” for  tpcenumeration: S 620-
>
1 o
SYStemathS ec  tec | ¢ e BB PRELIMINA
WW WE EW EE 6104 — Fit w/ Systematic Pulls i Data

100 150 200 250 300
Residual Range [cm]

Cryo. West Cryo. East
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Example dQ/dx Profile Data == TS Ew
Xxample X Frofie vadlad ¢ 700 < tars < 800 pis
S 645 0.3 < pitch < 0.4cm
<Dn: 640 Gain: 81.8+2.0 e~ /ADC
TPC EW =
£ 0207 600 < ty < 700 US 3 635 i
ICARUS L 0.3 < pitch < 0.4cm o i
O T
Commissioning a Gain: 81.84+2.0 6_/ADC > 630
<< 640 o
s A i( —— Fit w/ Systematic Pulls ¢ Data
S 630 620 | , , , |
TPC WE > i 100 150 200 250 300
s { Residual Range [cm]
6201 —— Fit w/ Systematic Pulls ¢ Data
: : : : l — 650 TPC EW
100 150 200 250 300 EO°° 800 < tarife < 900 s
Residual Range [cm] S5 0.3 < pitch < 0.4cm
<DE 540 Gain: 81.8+2.0 e~ /ADC
= Fit across all drift bins, with a separate x
L «“ ” S
gain in each TPC and “pulls” for  1pc enumeration: S 630-
1 o
SYStemathS e tec | ¢ e BB PRELIMINARY
WW  WE EW EE 6204 — Fit w/ Systematic Pulls ¢ Data

100 150 200 250 300

Cryo. West Cryo. East Residual Range [cm]
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Example dQ/dx Profile Data - TeC
Xxample X PIroflie balad  gsw 700 < £y < 800 s
S 0.3 < pitch < 0.4cm
<Dn: Gain: 84.3+2.0 e~ /ADC
_ TPC WW — 6201
€ 6301 } 600 < tdrift < 700 MS -Q
ICARUS S 0.3 < pitch < 0.4cm 9
Commissioning 2 Gain: 84.3+2.0e~/ADC > 610-
Data =620 2 191 PRELIMINARY
-ng P EL} —— Fit w/ Systematic Pulls ¢ Data
© T T T T T
TPC WE > 610 ; 100 150 200 250 300
= } Residual Range [cm]
6004 —— Fit w/ Systematic Pulls ¢ Data 640+
TPC WW

100 150 200 250 300
Residual Range [cm]

800 < Carife < 900 HS
0.3 < pitch < 0.4cm

Gain: 84.3+2.0 e~ /ADC

(o)}
w
o

" Fit across all drift bins, with a separate
gain in each TPC and “pulls” for  1pc enumeration:

¢

MPV dQ/dx [ADC/cm]
R
o

systematics EURI SRR = °'°) PRELIVINARY !4
WW  WE EW  EE —— Fit w/ Systematic Pulls ¢ Data

600 - : : : : .

100 150 200 250 300

Cryo. West Cryo. East

Residual Range [cm]
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Effect on the MPV:

oy MC

Smearing: 0.00cm

60000 -
50000 +

wn 40000 +

rie

£ 30000 -

E

20000 +

100

0

Bl MCSim
Landau Fit

M.PV. =
2.119 +/- 0.000
MeV/cm

Smearing w(x)

Pushes up the

MPV!

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Energy Loss [MeV/cm]

60000 +
50000
v 40000
2
=
‘= 30000 1
w
20000 +

10000 1

\Smiaring: 0.30cm
B MC Sim

Landau Fit
M.PV. =
2.259 +/-0.001
MeV/cm

0

1.0 1.|5 2.0 2.5 3.0 3.5 4.0

Energy Loss [MeV/cm]

* Results from a toy MC of muon energy loss in
LAr, for a wire spacing of 3mm

MPV Energy Loss [MeV/cm]

GRAY PUTNAM

Muon Energy: 10GeV

2 25041 —— Landau Approx.
Monte-Carlo Fit

0.00 005 010 0.15 020 025 0.30
Smearing Width [cm]
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Effect on the MPV at Large Thickness

Smearing: 0.00cm

50000 - .
& W MC Sim * Results from a toy MC of muon energy loss in
400001 Landau it LAr, for a wire spacing of 3mm
o 30000 - M.PV. = . . ]
= 1.920 +/- 0.001 * At large thickness (k), the Landau approximation
& 20000 eviem breaks down
Muon Energy: 0.2GeV
10000 4 .
At hlgh K CI1_(1! 1.5 2.0 2.5 3.0 3.5 4.0 ‘E 2.10 - Landau Appmx
the distribution " Energy Loss [MeVjem] ' > Monte-Carlo Fit )
is less Smearing: 0.30cm = —
Landau-like mm MCSim n 2.05
200007 Landau Fit 3
40000 -
0 M.PV. = = 2-00
'S 30000 - 2.083 +/-0.003 Q
& MeV/cm =
20000 1 W 1 g5
-
10000 - %
0 0.00 0.05 010 015 020 025 0.30

1.0 1.|5 2.0 2.5 3.0 3.5 4.0 _ _
Energy Loss [MeV/cm] Smearing Width [cm]
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Impact of Diffusion on Thickness at Detectors

0.8 1 3mm Pitch 8 1 Step Function(a)
—— 4.7mm Pitch @ Gaussian(o)
0.6 - SBND 6 - Large o Limit

0.a | DUNE-FD

Thickness () / Wire Pitch (a)
Y

Gaussian Width (o) / Wire Pitch (a)

| |
| |
| |

: : [CARUS _ .27

0.2 1 ! ! 217777 =47 1SBND

- 11 |

|CARUS | | _ | 2 -7 11 I

0.0 - : :DT — 12'0‘:”,1 /s 0{ ~BUNE- FD! ! !

0.0 0.5 10 15 2.0 2.5 0.0 0.5 1.0 1.5 2.0
Drift Time [ms] Gaussian Width (o) / Wire Pitch (a)
— w(x): convolution of the
or = [2Drtarift p=Jwl)dx %) function wi d
P Gaussian diffusion

* At the cathode, the effect of diffusion about doubles the channel thickness
relative to the wire pitch
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Impact on MPV in Relevant Detectors

MPV Energy Loss for a 1 GeV Muon

Detector Wire Drift Diffusion MPYV dE /dx, MPV dE /dx at Differ-

Pitch | Time | Const. Dy | No Diffusion Cathode (Full ence

[mm] | [ms] [cm?/s] [MeV /cm] Diff.) [MeV /cm] [Fo]

MicroBooNE [4] 3.00 2.33 5.85 1.69 1.79 5.9
ArgoNeuT [3] 400 | 0.295 | 12.0(9.30) 1.72 (1.72) 1.76 (1.75) 2.3(1.7)
ICARUS [5] 3.00 | 0960 | 12.0(9.30) 1.69 (1.69) 1.78 (1.77) 5.34.7)
SBND [5] 3.00 1.28 | 12.0(9.30) 1.69 (1.69) 1.79 (1.78) 5.9 (5.3)
DUNE-FD (SP) [7] | 4.71 2.2 12.0 (9.30) 1.74 (1.74) 1.82 (1.81) 4.6 (4.0)

* This translates into a few percent change to the MPV dE/dx at the
cathode
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