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ICARUS and SBN at Fermilab
▪ICARUS is the Far Detector in the Short Baseline Neutrino (SBN) Program

▪SBN program physics:
▪eV-scale sterile neutrino search

▪GeV-scale neutrino cross section measurements

▪Single Detector BSM physics searches
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ICARUS MicroBooNE SBND

ICARUS

3 Liquid-Argon-Time-Projection-Chamber (LArTPC) Detectors
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Neutrino Images from the ICARUS LArTPC

Each image is from one TPC 
inside each cryostat

https://news.fnal.gov/2021/05/icarus-gets-ready-to-fly
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Easy

Hard

𝜇/p, e/𝛾
Separation

Electron 
showers

Low-energy 
particles from 𝜈s

Low-energy 
electron tracks

Very low energy 
electron blips

ICARUS: A Liquid Argon Time Projection Chamber (LArTPC)
What measurements can you do with
charge calorimetry in a LArTPC?

A LArTPC is a calorimeter for measuring 
charged particles produced in 𝜈 interactions

NuMI Data

Candidatep

e



Using Charge at DUNE: Low Energy Electrons
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Physics goals for DUNE include a variety of signatures from low energy electrons,
which would apply calorimetric energy measurements.



How Well Can We 
Calibrate LArTPCs?
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▪ In LArTPC experiments, depositions from cosmic muons are used as a 
“standard candle” to calibrate the energy scale

Cosmic Muons as a Standard Candle

ICARUS Data

Stopping
Cosmic 𝜇

▪The known profile of charge depositions along a 
muon is used to measure channel gain to obtain the 
calorimetric energy scale 

Calorimetric Energy:
Q [ADC] -> Q [𝑒−] -> E 

Gain
Calibration

External
Measurement

(Recombination)



▪ In LArTPC experiments, depositions from cosmic muons are used as a 
“standard candle” to calibrate the energy scale

▪ The predicted ionization per length of a cosmic muon combines the Bethe-
Bloch energy loss with a recombination model to map energy to charge
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How well do we know the most-probable 
𝑑𝑄

𝑑𝑥
from a 

1GeV muon deposition with 1ms of drift time?

ArgoNeuT Collab, JINST (2013)

Recombination model: 
𝑑𝑄

𝑑𝑥
=

ln 𝛼+
𝑑𝐸

𝑑𝑥
𝛽

𝑊𝑖𝑜𝑛𝛽

ICRU 37, plus uncertainty from GAr v. LAr

Source CV with Uncertainty Percent Impact 
on dQ/dx

Recombination Modeling 𝛼 = 0.93 ± 0.02,
𝛽 = 0.212 ± 0.001

3.8

Mean Excitation Energy (I0) 188 ± 17 eV 1.0

Transverse Diffusion (𝐷𝑇) 8.8 ± 4.4 cm2/s 1.0

Accuracy of Energy Measurements

Extrapolation from longitudinal diffusion
through Wannier relation
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ArgoNeuT Collab, JINST (2013)

Recombination model: 
𝑑𝑄

𝑑𝑥
=

ln 𝛼+
𝑑𝐸
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Accuracy of Energy Measurements
▪ In LArTPC experiments, depositions from cosmic muons are used as a 
“standard candle” to calibrate the energy scale

▪ The predicted ionization per length of a cosmic muon combines the Bethe-
Bloch energy loss with a recombination model to map energy to charge

How well do we know the most-probable 
𝑑𝑄

𝑑𝑥
from a 

1GeV muon deposition with 1ms of drift time?



The Landau Energy Loss Distribution Depends on Wire Thickness

• The distribution of energy loss is a 
Landau distribution

•The peak of a Landau distribution has 
a dependence on the length of the 
particle observed by the wire

• As the thickness goes up, the most-
probable-value (MPV) of energy loss goes 
up
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Diffusion Changes the Thickness!
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• Diffusion transverse to the drift direction (and the wire direction) thickens the length 
of the muon that each wire is sensitive to – this changes the MPV energy loss

w(x): weight function
which gives a weight 
to how much ionization
charge a wire will see at
each point along the 
muon trajectory.

From: G Putnam and 
D Schmitz 
(arxiv: 2205.06745) 𝜎 = √2𝐷𝑇𝑡𝑑𝑟𝑖𝑓𝑡

𝜎



Energy Scale Calibration 
at ICARUS
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Energy Scale Calibration Procedure

▪ Step 1: normalize the detector response in the drift direction
▪ This removes detector effects such as argon impurities which attenuate the signal

▪ Step 2: calibrate the energy scale
▪ Examination of the systematic uncertainties and results at ICARUS

▪ For both steps, we have devised a procedure which addresses possible biases 
from diffusion
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Normalizing the Drift Direction Detector Response
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• Impurities in the argon attenuate ionization electrons as a function of drift time 

• To remove this effect: look at dQ/dx from cosmic muons, make it flat across the 
detector 𝑡𝑑𝑟𝑖𝑓𝑡

0

𝑡𝑑𝑟𝑖𝑓𝑡
1

𝑡𝑑𝑟𝑖𝑓𝑡
2



▪ Diffusion changes the underlying dE/dx of muon 
depositions across the drift direction

▪ We can remove this effect by coarse-graining the 
detector
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Drift Direction Response Normalization with Diffusion

10 Wire (coarse-grained)
measurement

1 Wire (hit-by-hit)
measurement

ICARUS Monte Carlo

Underlying dE/dx 
changes across drift

Flat dE/dx

PRELIMINARY



▪ Diffusion changes the underlying dE/dx of muon 
depositions across the drift direction

▪ We can remove this effect by coarse-graining the 
detector
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The difference in 
thickness (and 
thus dE/dx) 
narrows across 
the drift.

ICARUS Commissioning Data

PRELIMINARY

PRELIMINARY

Drift Direction Response Normalization with 
Diffusion



Energy Scale Calibration Procedure

GRAY PUTNAM           UNIVERSITY OF CHICAGO 17

• After normalizing detector response, we calibrate the energy scale by fitting 
to the dQ/dx profile of stopping cosmic muons

•Bin hits in terms of: residual-range (momentum),                                              
track angle, and drift time 𝑅𝑅0, 𝑝0, 𝑡0

𝑅𝑅1, 𝑝0, 𝑡1
Calibration

𝑅𝑅2, 𝑝0, 𝑡2

Binning hits by residual-range (to 
obtain momentum) and 
thickness selects for a single peak 
dE/dx to calibrate to.

ICARUS Data

Stopping
Cosmic 𝜇

Bragg
Peak

Michel e



Example dQ/dx Profile Data
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TPC Enumeration:

Cryo. EastCryo. West

TPC
WW

TPC
WE

TPC
EW

TPC
EE

▪ Fit across all drift bins, with a separate 
gain in each TPC and “pulls” for 
systematics

ICARUS 
Commissioning 
Data

TPC WE

PRELIMINARY

Gain: 85.3±2.0 𝑒−/ADC  
PRELIMINARY

Gain: 85.3±2.0 𝑒−/ADC  

PRELIMINARY

Gain: 85.3±2.0 𝑒−/ADC  



Calibration Fit Results
Parameter Prior 

CV
Prior 
Unc.

Posterior 
CV

Posterior 
Unc.

Recombination 𝛼 0.93 0.02 0.948 0.010

Recombination 𝛽𝑒𝑓𝑓
[cm3/g][cm/kV]

0.212 0.005 0.212 0.005

Transverse Diffusion 
𝐷𝑇 [cm2/s]

8.8 4.4 9.1 2.2

Mean Excitation Energy 
𝐼0 [eV]

188 17 194 15

Gain TPC EE [e-/ADC] 83.4 2.0

Gain TPC EW [e-/ADC] 81.8 2.0

Gain TPC WE [e-/ADC] 85.3 2.0

Gain TPC WW [e-/ADC] 84.3 2.0

GRAY PUTNAM           UNIVERSITY OF CHICAGO 19

Strong correlation between gain and 
recombination 𝛼 (𝛼 determines 
behavior near the MIP dE/dx).

ICARUS 
Commissioning 
Data
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Marginalize Over Recombination
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▪ By leveraging the correlation between gain and 
recombination in our dataset, we can lower the 
systematic uncertainty in dE/dx
▪ i.e.: marginalize over gain and recombination together

ICARUS Commissioning
Data

Strong correlation between gain and 
recombination 𝛼 (𝛼 determines 
behavior near the MIP dE/dx).

ICARUS 
Commissioning 
Data

PRELIMINARY

PRELIMINARY

Limited by ~1% 
uncertainty from 
mean excitation energy,
transverse diffusion

Limited by ~4% 
uncertainty in 
recombination

20



Closure Test with Energy Reconstruction 

▪ 4.7% resolution in bulk of distribution (2% 
intrinsic resolution from range)

▪ Bias within 1𝜎 range expected from 
systematic uncertainties
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▪ Compare calorimetric to range kinetic 
energy reconstruction for the stopping 
muon dataset

ICARUS 
Commissioning 
Data

ICARUS 
Commissioning 
Data

PRELIMINARY

PRELIMINARY

Double Gaussian Fit:



Looking Forward: We Need More Measurements

▪ This procedure works well inside the (cosmic 
𝜇) dataset we have, but will it generalize to 
others?
▪ArgoNeuT recombination found evidence for 

angular variations in recombination

▪ Could there be particle-type dependence in 
recombination (at the percent level)?
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▪ To obtain the best possible energy measurements, we need to better 
understand the argon
▪At ICARUS we can measure recombination and diffusion

𝑑𝑄

𝑑𝑥
against expected 

𝑑𝐸

𝑑𝑥
from 

protons and deuterons 
observed by ArgoNeuT

ArgoNeuT Collab, JINST (2013)



Conclusion

▪ Accurate and precise energy measurements are needed to unlock 
the physics potential of SBN and DUNE

▪ Systematic uncertainties in liquid argon properties limit the 
accuracy of calibrating the energy scale
▪ One of these, transverse diffusion, plays a role not appreciated in 

LArTPC experiments that we are now accounting for in ICARUS

▪ In ICARUS, we’ve implemented a calibration procedure that limits 
the effects of these systematic uncertainties

▪ Looking forward, more measurements of LAr properties are needed 
to get the best possible energy measurements
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Backup Slides
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Energy Loss by Elastic Scattering
•Charged particles lose energy in elastic collisions with atomic electrons

•Above the mean excitation energy, this is described by the Rutherford 
formula:

ρ𝑒
𝑑𝜎

𝑑𝑇
∝
1 − 𝛽2 𝑇/𝑇𝑚𝑎𝑥

𝑇2

Due to the power-law behavior of Rutherford scattering, muons lose much of 
their energy in a small number of large energy-transfer collisions (delta rays)

Mean: ~∫ 𝑑𝑇 𝑇
𝑑𝜎

𝑑𝑇
ρ𝑒-- diverges at low T -> atomic effects important

Variance: ~∫ 𝑑𝑇 𝑇2
𝑑𝜎

𝑑𝑇
ρ𝑒-- converges at low T -> delta rays determine variance
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Using Charge at SBN: Low Energy Protons
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π μ

20MeV proton

New Algorithm: 
use charge at 
vertex to identify 
protons below 
tracking threshold

ICARUS MC

ICARUS MC

μ

π

100MeV 
proton

1.5 cm

Higher energy 
protons are 
tracked

26

Charge-based 
reconstruction lowers 
the proton 
identification 
threshold, which can 
improve neutrino 
energy and topology 
reconstruction



How Well Can We Measure E using Q in LAr?

• Developments in LArTPC technology (cold electronics, high argon 
purity) increasingly provide excellent charge measurements

• How well can we turn those measurements of charge into energy?
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How accurately and precisely does charge measure energy in liquid argon?



Energy Resolution with Charge in LAr
▪ Charged particles traversing argon create a cascade of delta rays

▪ The same energy loss across a wire can be produced by different 
spectra of delta rays, which recombine differently
▪This produces a resolution effect in charge measurements!!
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Energy Resolution with Charge in LAr
▪ Charged particles traversing argon create a cascade of delta rays

▪ The same energy loss across a wire can be produced by different 
spectra of delta rays, which recombine differently
▪This produces a resolution effect in charge measurements!!
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Ionization electrons recombine into exited 
Ar states along each ionization column.



Energy Resolution with Charge in LAr
▪ Charged particles traversing argon create a cascade of delta rays

▪ The same energy loss across a wire can be produced by different 
spectra of delta rays, which recombine differently
▪This produces a resolution effect in charge measurements!!
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Line: resolution predicted
by resolution induced by 
delta rays

Thomas, Imel, and Biller PR A (1988)



Can Resolution be Improved for DUNE?
▪ Collecting both the charge and light from energy depositions 
could remove the resolution from recombination
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Projected improvement
in energy resolution using 
Q+L from LArIAT

There is not a significant 
improvement at the 
projected DUNE light yield 
(5 pe / MEV)

W Foreman et al., PR D (2020)

… however, adding a 
photosensitive dopant to the 
argon in DUNE would increase 
light-yield by turning it into 
charge collection.

Suggested by A Mastbaum, F Psihas, and J 
Zennamo (arxiv:2203.14700)



Electron Lifetime Result on Calibration Dataset
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TPC Enumeration:

Cryo. EastCryo. West

TPC
WW

TPC
WE

TPC
EW

TPC
EE

Error on lifetime 
is systematic
effect from 
(uncorrected) 
field distortions. 

ICARUS 
Commissioning Data

PRELIMINARY



Example dQ/dx Profile Data
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TPC
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▪ Fit across all drift bins, with a separate 
gain in each TPC and “pulls” for 
systematics

ICARUS 
Commissioning 
Data

TPC WE

PRELIMINARY
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PRELIMINARY
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Example dQ/dx Profile Data
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Example dQ/dx Profile Data
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TPC Enumeration:

Cryo. EastCryo. West

TPC
WW

TPC
WE

TPC
EW

TPC
EE

▪ Fit across all drift bins, with a separate 
gain in each TPC and “pulls” for 
systematics

ICARUS 
Commissioning 
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Gain: 84.3±2.0 𝑒−/ADC  



Effect on the MPV: Toy MC
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• Results from a toy MC of muon energy loss in 
LAr, for a wire spacing of 3mm 

Smearing w(x) 
Pushes up the 
MPV!



Effect on the MPV at Large Thickness
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• Results from a toy MC of muon energy loss in 
LAr, for a wire spacing of 3mm 

• At large thickness (𝜅), the Landau approximation 
breaks down

At high 𝜅,
the distribution
is less 
Landau-like



Impact of Diffusion on Thickness at Detectors
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ICARUS

SBND

DUNE-FD

DUNE-FD

ICARUS
SBND

• At the cathode, the effect of diffusion about doubles the channel thickness 
relative to the wire pitch

𝜎𝑇 = 2𝐷𝑇𝑡𝑑𝑟𝑖𝑓𝑡
𝓅 = ∫𝑤 𝑥 𝑑𝑥

𝓉 = 𝓅 𝑒−∫𝑤 𝑥 log 𝑤 𝑥 𝑑𝑥 /𝓅

w(x): convolution of the 
step-function wire and 
Gaussian diffusion



Impact on MPV in Relevant Detectors
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MPV Energy Loss for a 1 GeV Muon

• This translates into a few percent change to the MPV dE/dx at the 
cathode


