

For the IceCube Collaboration

Measurement of Atmospheric Muon Neutrino Disappearance using CNN Reconstructions with IceCube

Shiqi Yu Michigan State University

NuEact 2022

Neutrino Oscillation

- Produced and detected in 3 flavor states;
- Propagate in mass states;
- Described by PMNS matrix.

$$\begin{bmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{bmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \begin{bmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
Atmospheric & LBL reactor & LBL Solar

Neutrino Oscillation

- Atmospheric muon neutrino beam from cosmic ray interactions;
- Neutrino distance of travel (L) calculated using arrival direction (zenith)

Reconstruction is critical for studying atmospheric neutrino oscillation at 10-GeV scales

1.0

• v_{μ} disappearance probability:

 $P(\nu_{\mu} \to \nu_{\mu}) \approx 1 - \sin^2(2\theta_{23})\sin^2(\frac{1.27(m_{32}^2)}{m_{32}^2})$

100%

IceCube Neutrino Observatory

- 1 km^3 neutrino detector deep under South Pole ice;
- 5160 digital optical modules (DOMs) detect Cherenkov photons emitted during neutrino interactions;
- DOMs record pulse charges & times
- DeepCore: denser configured sub-detector, can observe GeV-scale neutrinos;

List of Reconstructed Variables

Reconstructions:

- Energy
- Direction (L)
- PID
- Interaction vertex `
- Muon classifier

GeV-Scale CNN Architecture

- Only use DeepCore & nearby IceCube strings
- Five CNNs trained & optimized separately

Inputs: 5 summarized variables

- sum of charges
- time of first (last) pulse
- charge weighted mean (std.) of times of pulses

Regression:

- Energy, direction, interaction vertex

Classification:

PID, muon classifier

Training Samples

- Balanced MC samples;
- Energy, direction, interaction vertex are trained on v_{μ} CC events (signal);
- PID and muon classifiers are trained on balanced samples.

NuE

20.0%

NuMu

40.0%

Muon Classifier 4.2 million in total

Muon

40.0%

Testing Samples

- Nominal MC sample with flux, xsec, and oscillation weights applied;
- Testing on signal (v_u CC) and major background (v_e CC);
- Baseline: current reconstruction method (likelihood-based)

K. Leonard IceCube plenary talk

Reconstruction Performance

- Flat median against true neutrino energy and zenith;
- CNN has comparable resolution to current method, and better at low energy (majority of sample)

Performance: Vertex

- Selecting events starting near DeepCore;
- Comparable purities in selected v_{μ} CC samples.

Performance: Muon and PID Classifiers

- Comparable performance to the current methods:
 - Similar AUC values.
- Hard to identify track from cascades at low energy \rightarrow less DOMs see photons.

Performance: Speed

	Second per file (~3k events)	Time for full sample assuming 1000 cores
CNN on GPU	21	~ 13 minutes
CNN on CPU	45	~ 7.5 hours
Current Likelihood-based method (CPU only)	120,000	~ 46 days

- CNN runtime improvement: ~6,000 times faster;
 - CNNs are able to process in parallelize with clusters \rightarrow can be even faster!
- Big advantage: large production of full Monte Carlo simulations $\sim O(10^8)$.

Preliminary Sample

- Event processings up to final level shared with the current analysis: <u>K.</u> <u>Leonard IceCube plenary talk</u>
- Final sample: high signal (ν_{μ} CC) and low background (noise and cosmic-ray muon) rates (~0.6%).

Measuring Oscillation

Measure atmospheric muon neutrino disappearance in 3D binning: reconstructed [energy, cos(zenith), PID]

- PID discriminates v_{μ} CC vs. all other interactions
- Robust against systematic uncertainties

IceCube Work in Progress

NuFact 2022 | Shiqi Yu

Oscillation Sensitivity

Oscillation analysis using CNN reconstruction has similar sensitivity (black) as IceCube's current likelihood-based analysis (red)

- Sensitivities projected from DeepCore 2021 (golden <u>K. Leonard IceCube plenary talk</u>
- 6000 times faster!
- Apply to future detector the Upgrade
- Analysis is unblinding, new results soon!

Future

The Upgrade detector:

- More densely instrumented strings in the center
- DOM: multiple PMT designs
- Target deploying 2024/25

New reconstruction methods needed: CNN is one solution

Conclusion

- CNNs are used for multipurpose reconstructions for IceCube oscillation analysis:
 - Energy, direction, interaction vertex;
 - PID (numu CC vs. background neutrinos), muon classifier.
- Approximately 6000 times faster in runtime than the current method;
 - Big advantage for IceCube full production \rightarrow large atmospheric neutrino sample.
- CNNs have better or comparable performances to the current reconstruction method;
- Ongoing and future work:
 - numu disappearance analysis using CNN reconstructions;
 - Optimizations on CNN itself;
 - Train for "ending point", etc.
 - Implement it for future experiment \rightarrow Upgrade.

Thank you!

Training Samples

Energy: nDOM >= 7 Muon : nDOM >= 4; 5–200 GeV Muon, PID, Vertex: nhits >= 8 hit 5-200 GeV Zenith: full containment cut on true vertexes, 5-300GeV

NuFact 2022 | Shiqi Yu

Performance: Direction

- Direction bias flat against true energy;
- Comparable to current method;
- Better resolution for v_{μ} CC (signal);
- High energy (>100 GeV) neutrinos leaving DeepCore
 - Need containment cut: interaction vertex reconstruction.

Performance: Energy

- Flat median against true neutrino energy;
 - CNN has better resolution at low energy (majority of sample)
- Comparable performance to current method at higher energy and in background;

Performance: Zenith

- Flat median against true direction;
- Comparable to current method in both signal and background.

Performance: Zenith (Contained, 5-300 GeV Sample)

Performance: Zenith (Analysis Samples)

Performance: Vertex

Efficiency matrixes

Systematic Effect: Neutrino Flux Model

Neutrino flux spectral index variation has different signature to expected

Fit for spectral index among other model systematics

$$N_{\sigma} = \frac{N_{\text{pulled}} - N_{\text{nominal}}}{\sqrt{N_{\text{nominal}}}}$$

NuFact 2022 | Shiqi Yu

Physics Motivations: Neutrino Oscillations

$$\begin{bmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{bmatrix} = U^{PMNS} \times \begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{bmatrix}$$

- Neutrino flavor eigenstates are superpositions of mass eigenstates.
- Relations described by PMNS matrix.

$$P(\nu_{\mu} \to \nu_{\mu}) \approx 1 - \sin^2(2\theta_{23})\sin^2(\frac{1.27(m_{32}^2)}{E})$$

- Most parameters are well measured.
- Some parameters need to be better measured: θ_{23} and Δm_{32}^2

IceCube Oscillation Results

Main results + current projection on sensitiv Kayla's plenary on Monday

We'll show an alternative way of doing nume $\frac{2}{\sqrt{5}}$ convolutional neural networks: 6000 times 1 $\frac{2}{\sqrt{5}}$ portable for the future expriment, the Upgra

