Measurement of Atmospheric Muon Neutrino Disappearance using CNN Reconstructions with IceCube

Shiqi Yu
Michigan State University

NuFact 2022
Neutrino Oscillation

- Produced and detected in 3 flavor states;
- Propagate in mass states;
- Described by PMNS matrix.

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix} =
\begin{bmatrix}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{bmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix}
\]

Some parameters need to be better measured: θ_{23}, Δm^2_{32}

Atmospheric & LBL reactor & LBL Solar
Neutrino Oscillation

- Atmospheric muon neutrino beam from cosmic ray interactions;
- Neutrino distance of travel (L) calculated using arrival direction (zenith)

Reconstruction is critical for studying atmospheric neutrino oscillation at 10-GeV scales

\[
P(\nu_\mu \rightarrow \nu_\mu) \approx 1 - \sin^2(2\theta_{23}) \sin^2\left(\frac{1.27 \Delta m^2_{32} L}{E}\right)
\]
IceCube Neutrino Observatory

- 1 km3 neutrino detector deep under South Pole ice;
- 5160 digital optical modules (DOMs) detect Cherenkov photons emitted during neutrino interactions;
- DOMs record pulse charges & times
- **DeepCore**: denser configured sub-detector, can observe **GeV-scale neutrinos**;
List of Reconstructed Variables

Reconstructions:

- Energy
- Direction (L)
- PID
- Interaction vertex
- Muon classifier

Analysis binnings

Selections

Track-like events:
\(\nu_\mu \) CC, 17% \(\nu_\tau \) CC

Cascade-like events:
\(\nu_e \) CC, NC, \(\nu_\tau \) CC

\(\nu_\mu(65.4\text{GeV}) \rightarrow \mu_\nu(62.7\text{GeV}) + \text{hadrons} \)

\(\nu_e(67\text{GeV}) \rightarrow e_\nu(57.5\text{GeV}) + \text{hadrons} \)
GeV-Scale CNN Architecture

- Only use DeepCore & nearby IceCube strings
- Five CNNs trained & optimized separately

Inputs: 5 summarized variables
- sum of charges
- time of first (last) pulse
- charge weighted mean (std.) of times of pulses

Regression:
- Energy, direction, interaction vertex

Classification:
- PID, muon classifier
Training Samples

- Balanced MC samples;
- Energy, direction, interaction vertex are trained on ν_μ CC events (signal);
- PID and muon classifiers are trained on balanced samples.

7 million

Muon Classifier

4.2 million in total

NuE
20.0%

ν_μ
40.0%

NuMu
40.0%

PID: ν_μ CC

6 million in total

Cascade
50.0%

ν_μ CC
50.0%

ν_μ NC

Testing Samples

- Nominal MC sample with flux, xsec, and oscillation weights applied;
- Testing on signal (ν_μ CC) and major background (ν_e CC);
- Baseline: current reconstruction method (likelihood-based)

K. Leonard IceCube plenary talk
Reconstruction Performance

- Flat median against true neutrino energy and zenith;
- CNN has comparable resolution to current method, and better at low energy (majority of sample)
Performance: Vertex

- Selecting events starting near DeepCore;
- Comparable purities in selected ν_μ CC samples.

![CNN Prediction](chart1)

![Likelihood-based Prediction](chart2)
Performance: Muon and PID Classifiers

- Comparable performance to the current methods:
 - Similar AUC values.
 - Hard to identify track from cascades at low energy → less DOMs see photons.
Performance: Speed

<table>
<thead>
<tr>
<th></th>
<th>Second per file (~3k events)</th>
<th>Time for full sample assuming 1000 cores</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNN on GPU</td>
<td>21</td>
<td>~ 13 minutes</td>
</tr>
<tr>
<td>CNN on CPU</td>
<td>45</td>
<td>~ 7.5 hours</td>
</tr>
<tr>
<td>Current Likelihood-based method (CPU only)</td>
<td>120,000</td>
<td>~ 46 days</td>
</tr>
</tbody>
</table>

- CNN runtime improvement: ~6,000 times faster;
 - CNNs are able to process in parallelize with clusters → can be even faster!
- Big advantage: large production of full Monte Carlo simulations ~$O(10^8)$.
Preliminary Sample

- Event processings up to final level shared with the current analysis: K. Leonard IceCube plenary talk
- Final sample: high signal (ν_{μ} CC) and low background (noise and cosmic-ray muon) rates (~0.6%).
Measuring Oscillation

Measure atmospheric muon neutrino disappearance in 3D binning: reconstructed [energy, cos(zenith), PID]

- PID discriminates ν_μ CC vs. all other interactions
- Robust against systematic uncertainties

IceCube Work in Progress

Cascade-like

Mixed

Track-like
Oscillation Sensitivity

Oscillation analysis using CNN reconstruction has similar sensitivity (black) as IceCube’s current likelihood-based analysis (red)

- Sensitivities projected from DeepCore 2021 (golden) [K. Leonard IceCube plenary talk]
- 6000 times faster!
- Apply to future detector — the Upgrade
- Analysis is unblinding, new results soon!
Future

The Upgrade detector:

- More densely instrumented strings in the center
- DOM: multiple PMT designs
- **Target deploying 2024/25**

New reconstruction methods needed:

CNN is one solution
Conclusion

- CNNs are used for multipurpose reconstructions for IceCube oscillation analysis:
 - Energy, direction, interaction vertex;
 - PID (numu CC vs. background neutrinos), muon classifier.
- Approximately 6000 times faster in runtime than the current method;
 - Big advantage for IceCube full production → large atmospheric neutrino sample.
- CNNs have better or comparable performances to the current reconstruction method;

- Ongoing and future work:
 - numu disappearance analysis using CNN reconstructions;
 - Optimizations on CNN itself;
 - Train for “ending point”, etc.
 - Implement it for future experiment → Upgrade.
Thank you!
Training Samples

Energy: nDOM ≥ 7
Muon: nDOM ≥ 4; 5–200 GeV
Muon, PID, Vertex: nhits ≥ 8 hit 5-200 GeV
Zenith: full containment cut on true vertexes, 5-300 GeV
Performance: Direction

- Direction bias flat against true energy;
- Comparable to current method;
- Better resolution for ν_μ CC (signal);
- High energy (>100 GeV) neutrinos leaving DeepCore
 - Need containment cut: interaction vertex reconstruction.
Performance: Energy

- Flat median against true neutrino energy;
 - CNN has better resolution at low energy (majority of sample)
- Comparable performance to current method at higher energy and in background;

\[
\nu_\mu \text{ CC} \quad \text{and} \quad \nu_e \text{ CC}
\]
Performance: Zenith

- Flat median against true direction;
- Comparable to current method in both signal and background.

Performance: Zenith
(Contained, 5-300 GeV Sample)
Performance: Zenith (Analysis Samples)
Performance: Vertex

Efficiency matrixes

![Efficiency matrixes](image)

- CNN Prediction
 - **Inside**: 94.48% of truth, 5.52% of truth
 - **Outside**: 42.75% of truth, 57.25% of truth

- Likelihood Prediction
 - **Inside**: 97.53% of truth, 2.47% of truth
 - **Outside**: 51.94% of truth, 48.06% of truth
Systematic Effect: Neutrino Flux Model

Neutrino flux spectral index variation has different signature to expected oscillation signal

- **Cascade-like**
- **Mixed**
- **Track-like**

Fit for spectral index among other model systematics

\[N_{\sigma} = \frac{N_{\text{pulled}} - N_{\text{nominal}}}{\sqrt{N_{\text{nominal}}}} \]

IceCube Work in Progress

Flux model systematic: Neutrino flux spectral index changed by $+1\sigma$
Physics Motivations: Neutrino Oscillations

\[
\begin{bmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{bmatrix} = U_{PMNS} \times \begin{bmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{bmatrix}
\]

- Neutrino flavor eigenstates are superpositions of mass eigenstates.
- Relations described by PMNS matrix.

\[P(\nu_\mu \rightarrow \nu_\mu) \approx 1 - \sin^2(2\theta_{23}) \sin^2\left(\frac{1.27 \Delta m_{32}^2 L}{E}\right)\]

- Most parameters are well measured.
- Some parameters need to be better measured: θ_{23} and Δm_{32}^2
IceCube Oscillation Results

Main results + current projection on sensitivity
Kayla’s plenary on Monday

We’ll show an alternative way of doing numu disappearance using convolutional neural networks: 6000 times faster in runtime; similar sensitivity; portable for the future experiment, the Upgrade.