

Oscillation Physics Potential of JUNO

Jinnan Zhang^{1,2} (张金楠)

On behalf of the JUNO collaboration

August 5, 2022

23rd International Workshop on Neutrinos from Accelerators (NuFact 2022)

E-mail: <u>zhangjinnan@ihep.ac.cn</u>

¹Institute of High Energy Physics, Beijing, China ²University of Chinese Academy of Sciences, Beijing, China

Outline

- The Jiangmen Underground Neutrino Observatory detectors
 - JUNO and TAO
- Reactor neutrinos
 - Neutrino Mass Ordering (NMO)
 - $\sin^2 \theta_{12}, \Delta m^2_{21}, \Delta m^2_{31}, \sin^2 \theta_{13}$
- Atmospheric neutrinos
 - NMO, θ_{23} , and δ_{CP}
- Solar neutrinos
 - $\sin^2 \theta_{12}$ and Δm^2_{21}
- Summary

The JUNO detectors

- A 20 kton multipurpose liquid scintillator (LS) detector
 - < 3% resolution @1 MeV
 - Optimized of neutrino mass ordering (NMO) determination
- A 2.8 ton Gd-loaded LS satellite detector
 - < 2% resolution @1 MeV

Jinnan Zhang (IHEP) 43.5 m

JUNO:

20 kton

Liquid

Scintillator

(LS)

For detector status and challenges of JUNO, see plenary talks by Livia Ludhova and Michele Montuschi.

- Signal **source**: 26.6 GW_{th} reactor complexes (6 cores of Yangjiang, 2 cores of Taishan).
- Oscillation [1]:

$$P_{\overline{\nu}_e \to \overline{\nu}_e} = 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \frac{\Delta m_{12}^2 L}{4E} - \frac{\sin^2 2\theta_{13}}{\cos^2 \theta_{13}} \cos^2 \theta_{12} \sin^2 \frac{\Delta m_{31}^2 L}{4E} + \sin^2 \theta_{12} \sin^2 \frac{\Delta m_{32}^2 L}{4E} \right).$$

- Detection channel: inverse beta decay (IBD) $\overline{\nu}_e + p \rightarrow e^+ + n$
 - Prompt signal by e^+ , consider energy nonlinearity (NL) and resolution (Res) effects

Reactor neutrinos at JUNO

- Time-energy-space coincidence to suppress background [1, 2]
- ➢ JUNO delayed signal: n-H (~2.2 MeV)
- ➤ TAO delayed signal: n-Gd (~8 MeV)

JUNO	TAO
47	2000
1.2	-
0.8	155
0.1	92
0.8	54
0.05	-
1.0	-
0.16	-
	JUNO 47 1.2 0.8 0.1 0.8 0.05 1.0 0.16

Reactor neutrinos at JUNO

- JUNO NMO median sensitivity $|\Delta \chi^2_{\min}| \equiv |\chi^2_{\min}(NO) \chi^2_{\min}(IO)|$ [1]: 3 σ (reactors only) @ ~6 yrs * 26.6 GW_{th} exposure
- Paper under preparation.

Reactor neutrinos at JUNO

arXiv: 2204.13249

• Precision measurement of the oscillation parameters

Precision of $\sin^2\theta_{12}$, Δm^2_{21} , $|\Delta m^2_{31}| / |\Delta m^2_{32}| < 0.5\%$ in 6 yrs

Atmospheric neutrinos at JUNO

- Signal detection channels: Charged Current (CC) interactions
- Major backgrounds: Neutral Current (NC) interactions and cosmic muons.
- ~78% optical coverage of JUNO offers
- \succ Great potential in PID, direction and energy reconstruction of atmospheric ν 's.

<i>N</i> /10 yrs	ν	$\overline{\nu}$	Total
v_e/\overline{v}_e CC	6637	2221	8858
$ u_{\mu}/\overline{ u}_{\mu}$ CC	8662	3136	11798
$\nu_{ au}/\overline{ u}_{ au}$ CC	90	44	133
NC	8558	3697	12255

Number of atmospheric ν interactions in JUNO

Major flavors: $v_{\mu}, \overline{v}_{\mu}, v_{e}, \overline{v}_{e}$

Oscillation Physics of JUNO - NuFact2022

Atmospheric neutrinos at JUNO

1.5

1.0

0.5

0.30

0.25

Sensitivity (a)

0.05

0.00

0.0

36

40

0.5

38

Sensitivity (a)

J. Phys. G 43, 030401 (2016)

Normal Hierarchy

- Conservative 10 yrs sensitivity: \succ NMO: 1~1.8 σ .
- $\geq \theta_{23}$ octant: 1.8 σ (0.9 σ) for 35°, NO (IO).

>CP violation: complementary measurement

More realistic sensitivity study with reconstruction performance [1, 2, 3, 4] and combined with reactor $\overline{\nu}_e$ are in progress.

Inverted Hierarchy

Solar neutrinos at JUNO

• Source:

- Oscillation [1, 2]:
- ➤ MSW resonance in the Sun
- > Earth matter effect: regeneration of v_e
- Detection:
- CC (correlated) and NC (singles) on ~200 ton ¹³C in JUNO LS
- > Elastic scattering (ES) on e^- (singles)

	Channels	Threshold	Signal	Event numbers	
		[MeV]		$[200 \text{ kt} \times \text{yrs}]$	after cuts
CC	$\nu_e + {}^{13}\text{C} \to e^- + {}^{13}\text{N}(\frac{1}{2}; \text{gnd})$	$2.2 {\rm ~MeV}$	$e^- + {}^{13}\mathrm{N}$ decay	3929	647
NC	$\nu_x + {}^{13}\text{C} \rightarrow \nu_x + {}^{13}\text{C}(\frac{3}{2}; 3.685 \text{ MeV})$	$3.685~{\rm MeV}$	γ	3032	738
ES	$ u_x + e o u_x + e$	0	e^-	$3.0{ imes}10^5$	6.0×10^{4}

[1] Chin.Phys.C 45 (2021) 2, 023004. [2] DOI: <u>10.5281/zenodo.6785200</u>.

Solar neutrinos at JUNO

- Independent measurement sensitivity in 10 years [1]:
- ➢⁸B flux: 5% JUNO-only, 3% JUNO+SNO
- $> \sin^2 \theta_{12}$:+9%/-8%
- $> \Delta m_{21}^2$: +27%/-17%

ES: Chin.Phys.C 45 (2021) 2, 023004 ES+NC+CC combined: paper under preparation

[1] DOI: 10.5281/zenodo.6785184. [2] Prog.Part.Nucl.Phys. 123 (2022) 103927. [3] DOI: 10.1016/j.pepi.2019.106409. [4] Phys.Rev.D 100 (2019) 11, 113009

Summary

- JUNO is a multipurpose large liquid scintillator detector
- Great potential in oscillation physics,

Neutrino source	Oscillation physics prospects
	3σ NMO significance with 6 yrs× 26.6 GW _{th}
Reactor $\overline{\nu}_e$	Precision of $\sin^2\theta_{12}$, Δm^2_{21} , $ \Delta m^2_{31} / \Delta m^2_{32} $ better than 0.5% (1%) in 6 yrs (1 yrs)
Atmoopharia w/a	Conservative 10 yrs sensitivity for NMO: $1 \sim 1.8\sigma$
Atmospheric v 's	Complementary θ_{23} and δ_{CP} measurement
Solar ⁸ B v _e	Independent measurement of oscillation parameters: 10 yrs, $\sin^2 \theta_{12}$:+9%/-8%, Δm_{21}^2 :+27%/-17%
Others	Visible oscillation effect in CCSN and Geo $\overline{ u}_e$

• Detector completion in 2023!

Thank you for your attention! Looking forward to results with data!

Jinnan Zhang (张金楠)

Backup

Reactor antineutrino analysis updates

	Design (J. Phys. G 43:030401 (2016))	Now (2022)
Thermal Power	36 GW _{th}	26.6 GW _{th} (26%↓)
Overburden	~700 m	~650 m
Muon flux in LS	3 Hz	4 Hz (33%↑)
Muon veto efficiency	83%	91.6% (10% ↑)
Signal rate	60 /day	47.1 /day (22%↓)
Backgrounds	3.75 /day	4.11 /day (10%↑)
Energy resolution	3% @ 1 MeV	2.9% @ 1 MeV (3%↑)
Shape uncertainty	1% for 36 keV	JUNO+TAO
3σ NMO sensitivity exposure	< 6 yrs $ imes$ 35.8 GW _{th}	~ 6 yrs \times 26.6 GW _{th}

Event type	Rate [/day]	Relative rate uncertainty	Shape uncertainty
Reactor IBD signal	60 🗲 47	-	-
Geo-v's	1.1 → 1.2	30%	5%
Accidental signals	0.9 → 0.8	1%	negligible
Fast-n	0.1	100%	20%
⁹ Li/ ⁸ He	1.6 → 0.8	20%	10%
¹³ C(<i>α</i> , <i>n</i>) ¹⁶ O	0.05	50%	50%
Global reactors	0 → 1.0	2%	5%
Atmospheric $v's$	0 → 0.16	50%	50%

Design in Physics book → this update J. Phys. G 43:030401 (2016)

Update of energy resolution

Change	Light yield in detector center [PEs/MeV]	Energy resolution	Reference
Previous estimation	1345	3.0% @1MeV	JHEP03(2021)004
Photon Detection Efficiency (27%→30%)	+11%↑		arXiv: 2205.08629
New Central Detector Geometries	+3% ↑	2.9% @ 1MeV	
New PMT Optical Model	+8%↑		EPJC 82 329 (2022)

- Cherenkov yield factor (refractive index & re-emission probability) is re-constrained with Daya Bay LS non-linearity
- Detector uniformity and reconstruction

Jinnan Zhang (IHEP)

Reactor Antineutrino Spectrum from TAO

- 1. ~94% coverage of SiPM with ~50% PDE
- 2. Inner diameter of target: 1.8 m, absorption of scintillation very small
- 3. Gd-LS works at -50°C, increase the photon yield Jinnan Zhang (IHEP) Oscillat

✓ Unprecedented energy resolution < 2% @ 1 MeV
 ✓ Shape uncertainty close to the assumption in the JUNO Physics Book (*J. Phys. G43:030401 (2016)*)

Atmospheric ν 's reconstruction progresses

Neutrino reconstruction angular resolution progresses, by T. Li, H. Duyang, Z. Liu [1].

[1] DOI: <u>10.5281/zenodo.6769313</u>. [2] DOI: <u>10.5281/zenodo.6782362</u>. [3] DOI: <u>10.5281/zenodo.6804861</u>.