

Neutrino Oscillation Measurement with KM3NeT/ORCA

on behalf of the KM3NeT Collaboration

Johannes Schumann NuFACT22, 5 Aug 2022

The KM3NeT Collaboration

Collaboration mainly European institutes

 also: Australia, Morocco, South Africa, U.A.E., Algeria and China

Water Cherenkov detectors using sea water as target volume

2 detectors sharing 1 optical sensing technology

Oscillation Research with Cosmics in the Abyss (ORCA) -

- Dense instrumentation for few GeV atmospheric neutrinos
- Determine neutrino mass hierarchy, oscillation parameters

Astroparticle Research with Cosmics in the Abyss (ARCA) -

- sparse instrumentation covering 1km³ instrumented volume for TeV-PeV cosmic neutrinos
- High-energetic astrophysical neutrino sources, diffuse flux

KM3NeT succeeding ANTARES

data taking period: 2008 - 2022

Possible location for 3rd detector site off the Greek coast

The KM3NeT Detector Sites

Building Block = 115 strings

ARCA

- Final configuration: 2x Building Blocks, 128340 PMTs
- Positioned ~120km off Sicily at 3500m sea depth
- 19 strings deployed (6.3%)

ORCA

- Final configuration: 1x Building Block, 64170 PMTs
- 11 strings deployed (9.6%)
- Close to the former ANTARES site about 40km off southern french coast near Toulon
- Sea floor depth of the ORCA site ~2450m

KM3NeT/ORCA in a nutshell

You are here

KM3NeT/ORCA current status

Detector Timeline (ORCA)

• Last NuFACT: 6 strings running

• Now: 11 strings deployed → currently 7 running

Some numbers:

DU furled and ready for the deployment

Johannes Schumann ECAP NuFACT2022 5

KM3NeT/ORCA6 Measurement

Oscillation measurement

- Dataset contains 355 days with 6 ORCA strings
- Compared model:

Atmospheric flux model → HKKM14

Oscillation parameters: → NO & NuFit 5.0 values

- Oscillation pattern matches the prediction very well
- Analysis parameters:

Parameter	Treatment Free/Fixed/Prior
θ_{12} [deg]	Fixed
θ_{13} [deg]	Fixed
θ_{23} [deg]	Free
$\Delta m_{31}^2 [10^{-3} \text{ GeV}^2]$	Free
$\Delta m_{21}^2 [10^{-5} \text{ GeV}^2]$	Fixed
δ_{CP} [deg]	Fixed
Normalisation	Free
Spectral index	Prior: 10%
$n_{ u_{ m up}}/n_{ u_{ m horiz}}$	Prior: 7%
$n_{ u_{\mu}}/n_{ u_{\overline{\mu}}}$	Prior: 10%
$n_{\nu_e}/n_{\nu_{\overline{e}}}$	Prior: 10%
$n_{ u_{\mu}}/n_{ u_{e}}$	Prior: 3%
n^{NC}	Prior: 10%
$n_{ au}^{CC}$	Prior: 20%
Energy scale	Prior: 10%

Oscillation Parameter Sensitivity

Updated oscillation parameter measurement with 6 strings

- Livetime increased from 355 days to 540 days
- Improved selection & particle identification
 - → together: Sample increased by factor 4
- (Unblinding & Measurement update about to come)

ORCA115
Prediction

7

Reconstruction & Particle Identification

Triggered events are reconstructed with different algorithms

- Reconstruction algorithms differ in the event geometry hypothesis, i.e. track and shower
- Events are classified by multiple features using random decision forests (RDF): **Features:** likelihood, reconstructed energy & direction, number of triggered hits, etc.
- v / μ classification → muon score
- noise classification → noise score
- track/shower classification → track / intermediate / shower

Reconstruction & Particle Identification

Triggered events are reconstructed with different algorithms

- Reconstruction algorithms differ in the event geometry hypothesis, i.e. track and shower
- Events are classified by multiple features using random decision forests (RDF):
 Features: likelihood, reconstructed energy & direction, number of triggered hits, etc.
- v / μ classification → muon score
- noise classification → noise score
- track/shower classification → track / intermediate / shower

 $(N_{NO}-N_{IO})$ $|N_{NO}-N_{IO}|/N_{NO}$

KM3NeT/ORCA full detector estimated sensitivity

ORCA Mass Ordering Sensitivity

assumed data taking time: 3 years

[3]

@ θ_{23} = 48°

NMH sensitivity combined with JUNO

Massive increase of sensistivity by combining ORCA & JUNO

- Analysis approach: Δm_{31} disagrement on wrong NMO hypothesis
- Sensitivity boost compared to full ORCA only: $4\sigma \rightarrow 6\sigma$ @3yrs, normal ordering and $\Theta_{23} = 48^{\circ}$

08/05/22 Johannes Schumann **ECAP** NuFACT2022 11

KM3NeT/ORCA Sterile Neutrinos

4th Sterile Flavour Properties

- 4 neutrino flavour yields:
 - **3** additional **mixing angles**
 - 2 additional phases
 - (1 additional mass)

Given sensitivitiy for large Δm_{41} limit

assumed data taking time 3 years

Free phase δ_{24} worsens the sensitivity

• here phase for IC and SK is assumed to be $\delta_{24} = 0^{\circ}$

[6]

12

Non Standard Interactions & Neutrino Decay

Constraining non-standard interactions

- 1 year sensitivity about to be competitive to other experiments
- ORCA prediction for 355 days livetime in 6 string configuration

Neutrino decay / livetime

- Proof of principle
- Full ORCA detector will be world-leading

Johannes Schumann ECAP NuFACT2022 08/05/22 13

Neutrino Decoherence

14

Preliminary sensitivities

- Constraints on a wide range of power law indices, i.e. [-2, 2]
- ORCA dominates negative indices → lower energies more relevant
- ARCA dominates positives indices → vice versa as higher energies are more relevant

Summary

ORCA Detector Status

- First oscillation results already obtained
 - → e.g. NSI already competitive
- Data taking is on-going while detector is growing (currently 11 strings deployed)
- Refinement of the data analysis causes sample size growth larger than livetime growth

Perspectives

- Upon completion KM3NeT/ORCA will be one of the leading experiments with respect to NMH & oscillation parameter measurement with atmospheric neutrinos
- Construction ramping up on the way to the full detector

Thank You!

Johannes Schumann ECAP NuFACT2022 08/05/22 15

References

- [1] A. V. Akindinov and others, "Letter of Interest for a Neutrino Beam from Protvino to KM3NeT/ORCA", Eur. Phys. J. C, vol. 79, no. 9, p. 758, 2019, doi: 10.1140/epjc/s10052-019-7259-5.
- [2] A. López-Oramas, Multi-year Campaign of the Gamma-Ray Binary LS I +61 ° 303 and Search for VHE Emission from Gamma-Ray Binary Candidates with the MAGIC Telescopes. 2015. doi: 10.13140/RG.2.1.4140.4969.
- [3] S. Aiello and others, "Determining the neutrino mass ordering and oscillation parameters with KM3NeT/ORCA", Eur. Phys. J. C, vol. 82, no. 1, p. 26, 2022, doi: 10.1140/epjc/s10052-021-09893-0.
- [4] L. Nauta and others, "First neutrino oscillation measurement in KM3NeT/ORCA", PoS, vol. ICRC2021, p. 1123, 2021, doi: 10.22323/1.395.1123.
- [5] N. Chau, J. P. Athayde Marcondes de André, V. Van Elewyck, A. Kouchner, L. Kalousis, and M. Dracos, "Neutrino mass ordering determination through combined analysis with JUNO and KM3NeT/ORCA",

 JINST, vol. 16, no. 11, p. C11007, 2021, doi: 10.1088/1748-0221/16/11/C11007.
- [6] S. Aiello and others, "Sensitivity to light sterile neutrino mixing parameters with KM3NeT/ORCA", JHEP, vol. 10, p. 180, 2021, doi: 10.1007/JHEP10(2021)180.
- [7] J. Manczak, "First limits on neutrino non-standard interactions with KM3NeT/ORCA6." Zenodo, 2022. doi: 10.5281/zenodo.6785232.
- [8] Lessing, N. (2022). Sensitivity to quantum decoherence in neutrinooscillations with KM3NeT [Masterthesis]. Friedrich-Alexander-Universität Erlangen-Nürnberg.

Johannes Schumann ECAP NuFACT2022 05/08/22 17

Backup

KM3NeT/ORCA Details

Planed ORCA layout and components

Estimated effective Volume

Johannes Schumann ECAP NuFACT2022 08/05/22 19

KM3NeT Infrastructure

Infrastructure and production sites

Johannes Schumann ECAP NuFACT2022 08/05/22 20

KM3NeT/ORCA time calibration

Inter PMT calibration → Insitu using Potassium 40

Inter DOM calibration → On-shore using laser pulses

Inter string calibration → Synchronisation with network

KM3NeT/ORCA position calibration

Orientation

Calibration result:

 Calibrate with a acoustic calibration and check muon reconstruction time residuals

22

Sterile oscillation pattern

Oscillation probability $P(\mu \rightarrow \mu)$:

ANTARES Sensitivity:

- IceCube dataset only up to ~60GeV while ANTARES dataset contains up to over 100 GeV
- ANATRES sensitivity decreases if dataset is limited to the IceCube used energy range

Johannes Schumann **ECAP** NuFACT2022 08/05/22 23

NC Particle Identification

24

Direction Reconstruction

Johannes Schumann ECAP NuFACT2022 25

Energy Reconstruction

