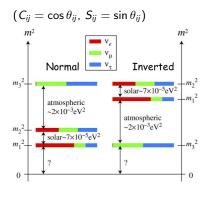
Long-Baseline Neutrino Oscillation Physics Sensitivities of the Hyper-Kamiokande Experiment

Megan Friend

High Energy Accelerator Research Organization (KEK)

For the Hyper-Kamiokande Collaboration

August 6, 2022, NuFACT2022


Outline

- Hyper-Kamiokande overview and status
- Hyper-Kamiokande long-baseline physics sensitivities
 - δ_{CP}
 - Mass Hierarchy
 - θ₂₃
 - Non-oscillation physics

Neutrino Oscillation

Neutrino oscillation can be described by the PMNS mixing matrix:

$$U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & +C_{23} & +S_{23} \\ 0 & -S_{23} & +C_{23} \end{pmatrix} \begin{pmatrix} +C_{13} & 0 & +S_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -S_{13}e^{i\delta_{CP}} & 0 & +C_{13} \end{pmatrix} \begin{pmatrix} +C_{12} & +S_{12} & 0 \\ -S_{12} & +C_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Mass Ordering unknown

Precisely measure all parameters to fully understand neutrino oscillation

• $\theta_{12} = 33.6^{\circ} \pm 0.8^{\circ} - \text{solar } \nu$'s

•
$$\theta_{23} = 45.6^{\circ} \pm 2.3^{\circ}$$

- is θ_{23} maximal?

• $\theta_{13} = 8.3^{\circ} \pm 0.2^{\circ}$ – recent reactor $\bar{\nu}_e$ disappearance measurements

 δ_{CP} unknown \rightarrow possibility

of CP violation in the lepton sector

 \rightarrow May be able to help explain the dominance of matter over anti-matter in the Universe

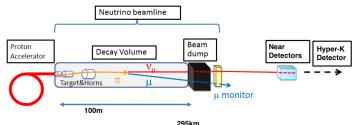
Hyper-Kamiokande Long-Baseline Program

- MW-class neutrino beam from upgraded J-PARC MR accelerator
 - Produce primarily u_{μ} or $\bar{\nu}_{\mu}$ beam, 2.5° off-axis
- Neutrino flux and systematic errors constrained by upgraded ND280 detector and new Intermediate Water Cherenkov Detector
- Gigantic Hyper-Kamiokande water Cherenkov detector
 - Measure $u_{\mu} \rightarrow \nu_{e}$ appearance and $u_{\mu} \rightarrow \nu_{\mu}$ disappearance oscillations

The Hyper-Kamiokande Collaboration

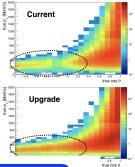
The Hyper-Kamiokande collaboration consists of >400 researchers from 20 countries

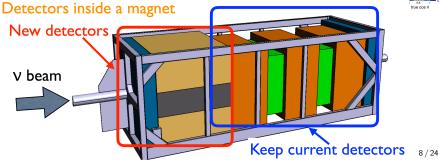
HK collaborators (February 2020)

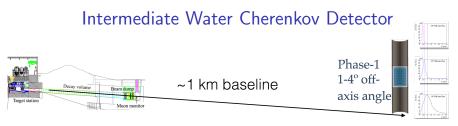


Hyper-Kamiokande Status

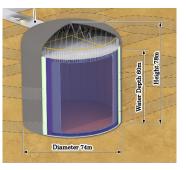
- Access/approach tunnel excavation reached the center of the future HK main cavern's dome June 2022
- Excavation of the circular tunnel around the dome has started

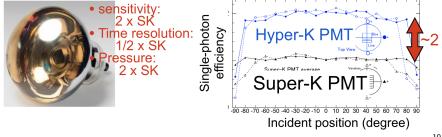

J-PARC Neutrino Beam

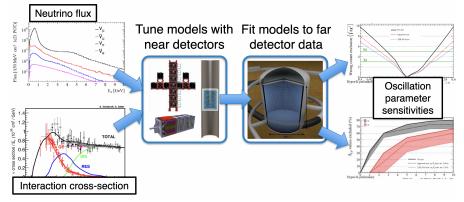



- Slam high-intensity 30GeV proton beam into 90-cm carbon target
- Focus outgoing hadrons in 3 electro-magnetic focusing horns
 - Switch between ν or $\bar{\nu}$ -mode by changing the horn polarity
- Pions decay to muons and u_{μ} 's in 100-m-long decay volume
- Stop interacting particles in beam dump; neutrinos continue on to near and far detectors
 - Monitor >5GeV muon beam by Muon Monitor in beam dump
- Constrain proton interactions by external hadon production measurements (NA61, EMPHATIC) to precisely simulate the flux
- Upgrades to J-PARC accelerator underway now towards 1.3+MW proton beam power for HK

ND280 Near Detector Complex

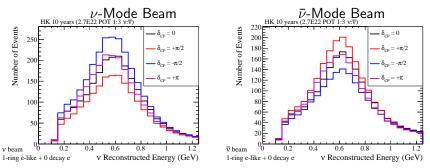

- Suite of Near Detectors 280 m from the neutrino source
 - Monitor the neutrino beam stability and direction
 - Constrain the neutrino flux
 - Precisely measure neutrino cross sections
- Upgrades to ND280 underway now
 - Improve acceptance for high-angle and backwards tracks to improve systematic error constraint


- 1 kilo-ton scale water Cherenkov detector located ${\sim}1~\text{km}$ from the neutrino source
- Position of instrumented part of the detector can be moved in ${\sim}50$ m shaft to make measurements at different off-axis angles
 - Take advantage of pion decay kinematics to probe neutrino interactions as a function of neutrino energy
- Measurements to address uncertainties on neutrino-nucleus scattering modeling for Hyper-K
 - Measure relationship between neutrino energy and final state particles
 - Precisely measure the $\nu_e/\bar{\nu}_e$ cross section
 - Measure neutron production in neutrino-nucleus scattering
- Now finalizing site selection + optimizing detector design

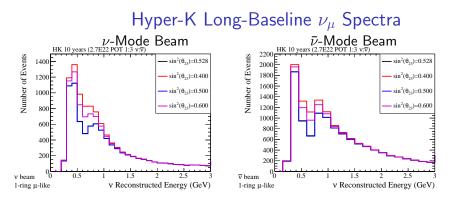

50cm Hyper-K PMT

Hyper-Kamiokande Detector

- 188kton fiducial mass water Cherenkov detector (~8x larger than SK)
- Sub-GeV ring-imaging capability
- Excellent ν_e/ν_μ particle ID capability
- 20k 50cm Box and Line Dynode ID PMTs
- Multi-PMTs for directional information, improved spacial and timing resolution
- Scheduled to turn on in 2027



Hyper-Kamiokande Oscillation Analysis Method


- Based on T2K oscillation analysis method
- Simultaneous fit of HK far detector ν_e reconstructed energy vs angle + ν_μ reconstructed energy spectra

Hyper-K Long-Baseline ν_e Spectra

- Sensitivity to δ_{CP} comes mainly from $\nu_{\mu} \rightarrow \nu_{e}$ appearance number of events in neutrino- vs antineutrino-modes
- Number of expected ν_e -like events (assuming 10 years at 1.3MW×10⁷ seconds, 1:3 $\nu:\bar{\nu}$, NH, sin² $\theta_{13} = 0.0218$, $\delta_{CP} = 0$) :

	$\nu_{\mu} \rightarrow \nu_{e}$	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$	Beam ν_{μ}	Beam $\bar{ u}_{\mu}$	Beam ν_e	Beam $\bar{\nu}_e$	NC	Total
ν-Mode, ν _e CCQE-like	2252.51	11.70	6.53	0.23	326.15	12.34	130.30	2739.76
$\bar{\nu}$ -Mode, ν_e CCQE-like	257.26	796.55	3.24	4.99	147.70	236.90	177.33	1623.97
$ u$ -Mode, ν_e CC1 π -like	207.36	0.23	4.49	0.14	34.46	0.29	10.65	257.63

- Sensitivity to $\sin^2 \theta_{23}$ and Δm^2_{32} comes mainly from ν_{μ} disappearance depth and energy of oscillation dip
- Number of expected ν_{μ} -like events (assuming 10 years at $1.3 \text{MW} \times 10^7 \text{seconds}$, $1:3 \ \nu:\bar{\nu}$, NH, $\sin^2 \theta_{23} = 0.528$, $\Delta m_{32}^2 = 2.509 \times 10^{-3} \text{ eV}^2$):

	ν_{μ}	$\bar{\nu}_{\mu}$	ν_e	$\nu_{\mu} \rightarrow \nu_{e}$	$\bar{\nu}_e$	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$	NC	Total
ν -Mode, ν_{μ} CCQE-like	8583.80	479.91	0.24	2.32	0.01	0.01	282.99	9349.30
$ar{ u}$ -Mode, $ u_{\mu}$ CCQE-like	4399.40	7688.44	0.28	0.33	0.24	0.42	285.92	12375.02

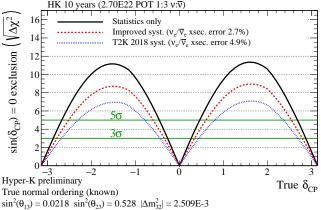
HK Long-Baseline Systematic Error Model

Three systematic error models shown here:

- T2K 2018 (after the near detector fit)
- Improved systematics, calculated by scaling the T2K-2018 error model assuming increased run time + sensitivities from ND280-upgrade and IWCD
 - Scaling uncertainty on flux, cross-section and SK detector systematics by $1/\sqrt{N}$, where N = 8.7 is the relative increase in neutrino beam exposure from T2K to Hyper-K
 - Studies from ND groups used to apply a further constraint to the cross-section model uncertainties:
 - A factor of 3 reduction on all non-quasi-elastic uncertainties
 - A factor of 2.5 reduction on all quasi-elastic uncertainties
 - A factor 2 reduction on all anti-neutrino uncertainties
 - A reduction in neutral current uncertainties to the ${\sim}10\%$ level
 - The $\nu_e/\bar{\nu}_e$ cross-section ratio error was varied from ${\sim}3.6\%$ to 1% to assess its impact
 - No parameter was allowed to have an uncertainty of less than 1%
- Statistics only (no systematics)

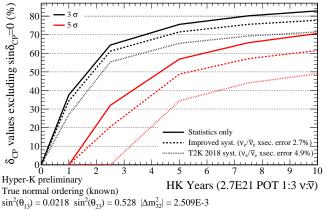
HK Long-Baseline Systematic Errors

- For current sensitivity studies base HK long-baseline systematics on T2K errors
 - More robust HK systematic error model under development now

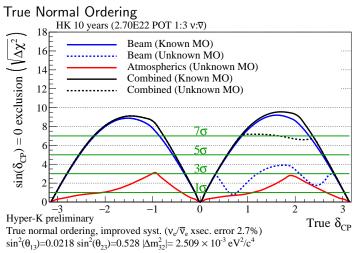

1-Ring ν_{μ} -Like 1-Ring ν_e -Like $\bar{\nu}$ -Mode $\bar{\nu}$ -Mode Error source ν -Mode ν -Mode ν -Mode ν-Mode/ $\bar{\nu}$ -CCQE-like CCQE-like $CC1\pi$ -like Mode CCQE-like 4.37% 3.27% 2.95% 4.33% 4.99% 4.52% Flux + xsecDetector+FSI 3.22% 2.76% 4.14% 4.39% 17.77% 2.06% 6.25% All syst 4.63% 4.10% 5.97% 18.49% 4.95%

T2K 2018 errors:

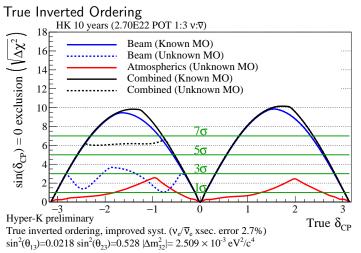
Improved HK errors:


	1-Ring	$ u_{\mu}$ -Like	1-Ring ν_e -Like					
Error source	ν-Mode	$\bar{\nu}$ -Mode	ν-Mode CCQE-like	<i>ī</i> v-Mode CCQE-like	u-Mode CC1 π -like	u- Mode/ $\overline{\nu}$ - Mode CCQE-like		
Flux + xsec	0.81%	0.72%	2.07%	1.88%	2.21%	2.28%		
Detector+FSI	1.68%	1.58%	1.54%	1.72%	5.21%	0.97%		
All syst	1.89%	1.74%	2.56%	2.53%	5.63%	2.45%		

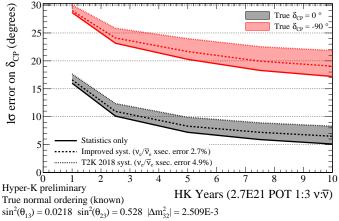
Impact of Systematics on the δ_{CP} Measurement


- Sensitivity to exclude sin $\delta_{CP} \neq$ 0 for different true values of δ_{CP} assuming the MO is known
- Significant change in sensitivity to δ_{CP} depending on the systematic error model particularly sensitive to the error on the $\nu_e/\bar{\nu}_e$ ratio $_{_{16/24}}$

Fraction of δ_{CP} Resolved


- Can resolve non-zero δ_{CP} for \sim 60% of possible true values of δ_{CP} at 5σ and \sim 80% at 3σ assuming the optimistic error model if the MO is known
- Significant change in sensitivity to δ_{CP} depending on the systematic error model particularly sensitive to the error on the $\nu_e/\bar{\nu}_e$ ratio

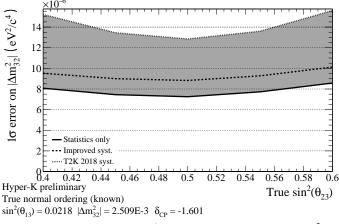
Resolving the Mass Ordering with HK Atmospheric Neutrinos


- Combined fit of Hyper-K long-baseline and atmospheric neutrinos
- Atmospheric neutrinos can help to resolve the MO

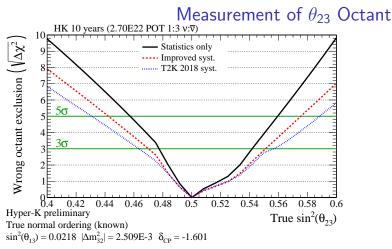
Resolving the Mass Ordering with HK Atmospheric Neutrinos

- Combined fit of Hyper-K long-baseline and atmospheric neutrinos
- Atmospheric neutrinos can help to resolve the MO

Error on δ_{CP} Measurement



• Can make a precise measurement of δ_{CP} –

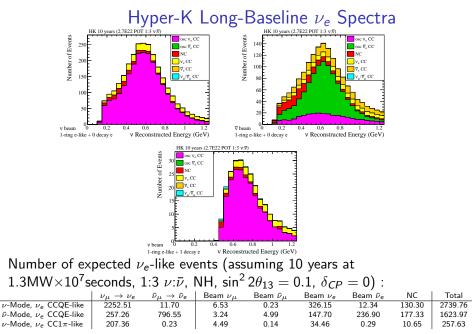

 $\delta_{CP}=-90^\circ\pm19^\circ$, $\delta_{CP}=0^\circ\pm6.5^\circ$ assuming optimistic error model

• Significant change in sensitivity to δ_{CP} depending on the systematic error model – particularly sensitive to the error on the $\nu_e/\bar{\nu}_e$ ratio

Measurement of Δm_{32}^2

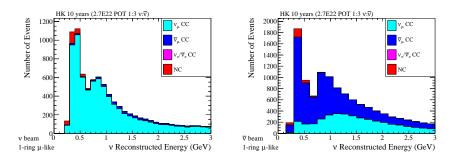
- 1σ resolution of Δm_{32}^2 as a function of true sin² θ_{23} $\sim 9 \times 10^{-6} \text{ eV}^2 \ 1\sigma$ error on Δm_{32}^2
- Systematics-limited measurement
- (Long-baseline fit only shown here further sensitivity improvement when including atmospheric neutrinos)

- Wrong θ_{23} octant can be excluded at 3σ for true sin² $\theta_{23} < 0.47$ and true $\sin^2 \theta_{23} > 0.55$
- Systematics-limited measurement
- (Long-baseline fit only shown here further sensitivity improvement when including atmospheric neutrinos)


Hyper-Kamiokande Beam Non-Oscillation Physics Sensitivity

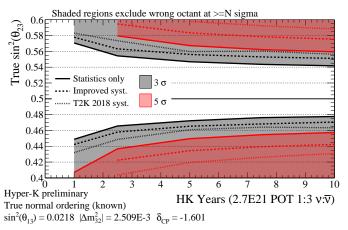
- Precision measurements of various important neutrino cross sections at the HK near detectors
 - Upgraded ND280 has unique capabilities to make precise measurements
 - Intermediate Water Cherenkov Detector allows for precision interaction measurements at different off-axis angles \to different beam energies
- Also aim for a search of non-standard/new physics in the HK near detectors :
 - Sterile neutrinos, heavy neutrinos (heavy neutral leptons), Lorentz violation, etc...

Conclusion


- Excavation for the Hyper-Kamiokande detector is ongoing detector will turn on in 2027
- Essential to constrain systematic errors to achieve maximum sensitivity
- Hyper-Kamiokande long baseline neutrino oscillation measurements have sensitivity to:
 - Exclude CP conservation at 5σ for $\sim 60\%$ of δ_{CP} parameter space
 - Measure δ_{CP} with precision of $< 20^{\circ}$ (better, depending on the true value of δ_{CP})
 - Determine the Mass Ordering to $> 3\sigma$
 - Achieve 3σ exclusion of wrong θ_{23} octant for $\sin^2\theta_{23}<0.47$ or $\sin^2\theta_{23}>0.55$
- Sensitivities shown here based on T2K analysis tools
 - Various improvements to T2K analysis since 2018 not implemented yet
 - Now developing dedicated HK analysis tools
 - Development of robust systematics model based on HK detectors underway

Backup Slides

26 / 24


Hyper-K Long-Baseline ν_{μ} Spectra

Number of expected ν_{μ} -like events (assuming 10 years at 1.3MW×10⁷ seconds, 1:3 $\nu:\bar{\nu}$, NH, sin² $2\theta_{13} = 0.1$, $\delta_{CP} = 0$) :

	ν_{μ}	$\bar{\nu}_{\mu}$	ν_e	$\nu_{\mu} \rightarrow \nu_{e}$	$\bar{\nu}_e$	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$	NC	Total
ν -Mode, ν_{μ} CCQE-like	8583.80	479.91	0.24	2.32	0.01	0.01	282.99	9349.30
$\bar{\nu}$ -Mode, ν_{μ} CCQE-like	4399.40	7688.44	0.28	0.33	0.24	0.42	285.92	12375.02

Measurement of θ_{23} Octant

- Wrong θ_{23} octant can be excluded at 3σ for true sin² $\theta_{23} < 0.47$ and true sin² $\theta_{23} > 0.55$
- Systematics-limited measurement