Tau Neutrino Studies at ICAL Detector in INO

R. Thiru Senthil & D. Indumathi

The Institute of Mathematical Sciences, Chennai Homi Bhabha National Institute, Mumbai

05 August 2022

 ν_{τ} Studies at ICAL in INO

\mathbf{D} $u_{ au}$ events at INO

2 Generation of CC-tau and NC events in ICAL

3 Numerical analysis and physics reach

- Best fit approach
- Sensitivity to the presence of tau events
- Sensitivity to the oscillation parameters

Combined study of tau events and standard muon events

5 Conclusion

Iron Calorimeter Detector (ICAL) at India-based Neutrino Observatory (INO) and miniICAL Detector

Schematic of mountain showing horizontal tunnel, its cross sectional view, caverns and ICAL

Atmospheric neutrino flux

- Atmospheric neutrinos are produced from the primary and secondary interactions of cosmic rays with Earth's atmosphere.
- The ratio of $\nu_e:\nu_\mu:\nu_\tau$ in atmospheric neutrinos is approximately $1:2:\sim 10^{-5}$ in the few GeV energy range.

- When these atmospheric neutrinos pass through the Earth to reach the detector, neutrino flavour oscillations occur, and the flavor ratio is closer to 1 : 1 : 1 in few 10s of GeV energy range.
- The atmospheric neutrino fluxes contain a significant fraction of ν_{τ} in the upward direction.

Atmospheric ν_{τ} - Oscillation probabilities

 ν_{τ} Studies at ICAL in INO

 ν_{τ} interacting via charged current (CC) with the nucleons in the detector produces charged $\overline{\tau}$ leptons and hadrons (X) via

$$u_{\tau} N \to \tau^{-} X ; \qquad \overline{\nu}_{\tau} N \to \tau^{+} X ,$$

The τ leptons will decay promptly, primarily into hadrons (*H*).

$$\begin{split} \tau^- &\to e^- \bar{\nu_e} \nu_\tau \quad \sim \quad 17\% \ , \\ \tau^- &\to \mu^- \bar{\nu_\mu} \nu_\tau \quad \sim \quad 17\% \ , \\ \tau^- &\to \nu_\tau H \quad \sim \quad 66\% \ , \end{split}$$

(and similar fractions for τ^+ as well).

Hence, the total hadron energy from CC: (X + H).

Neutral Current (NC) interactions from <u>all flavours</u> of neutrinos and antineutrinos also produce hadrons (X')

$$u_i N \to \nu_i X' , \ \overline{\nu}_i N \to \overline{\nu}_i X' ; \quad i = e, \mu, \tau .$$

- Hadrons (X + H) from CC interactions of ν_τ and hadrons (X') from NC interactions of all neutrino flavours, cannot be separated.
- Therefore, the NC events act as an inseparable background to the CC-tau events.
- Hence, we study the combined sample of all NC and CC-tau events.

- We use NUANCE event generator.
- We generate "Unoscillated" CC-tau events (assuming ν_{μ} and ν_{e} atmospheric fluxes and the CC-tau cross sections) excluding the oscillation probability.
- These unoscillated events are weighted with the oscillation probability during "data" generation and analysis.
 - We use PMNS mixing matrix and PREM profile for matter distribution inside the Earth during the probability calculation.
 - We assume normal mass ordering and performed the analysis for 10 years.
- Similarly NC events are generated using same atmospheric neutrino fluxes and NC cross sections.

Parameter	Value	3σ Range	
$\sin^2 \theta_{12}$	0.304	fixed	
$\sin^2 \theta_{13}$.0222	$.0203 \leftrightarrow .0241$	
$\sin^2 \theta_{23}$	0.5	$.381 \leftrightarrow .615$	
$\Delta m^2_{21} (imes 10^{-5} eV^2)$	7.42	fixed	
$\Delta m^2 \times 10^{-3} eV^2$	2.47	$2.395 \leftrightarrow 2.564$	
$\delta_{CP}(^{\circ})$	0.0	fixed	

Table: 3σ ranges of neutrino oscillation parameters. $\Delta m^2 \equiv m_3^2 - (m_2^2 + m_1^2)/2$.

Reconstruction efficiency of hadrons

R. Thiru Senthil (IMSc)

 ν_{τ} Studies at ICAL in INO

NuFact - 5 Aug 2022

Pull method

$$\chi^{2} = \min_{\xi_{k}} \sum_{i=1}^{N_{E}} \sum_{j=1}^{N_{cos\theta}} 2\left(\left(T^{ij} - D^{ij} \right) - D^{ij} \ln \left(\frac{T^{ij}}{D^{ij}} \right) \right) + \sum_{k=1}^{N_{k}} \xi_{k}^{2}$$

• $D^{ij} = [D^{ij}_{\tau,+} + D^{ij}_{\tau,-} + D^{ij}_{NC,+} + D^{ij}_{NC,-}]$: CC-tau + NC events.

• *T^{ij}* is No. of predicted theory events (generated using a various set of oscillation parameters).

$$T^{ij} = T^{ij}_{\pm} + T^{ij}_{-},$$

where $T^{ij}_{\pm} = T^{ij,0}_{\pm} \left(1 + \sum_{k=1}^{N_k} \pi^{ij}_{k,\pm} \xi_{k,\pm} \right)$ (1)

 $T^{ij,0}_{\pm}$ are events without systematic errors

• $\xi_k^2 \equiv \xi_{k,-}^2 + \xi_{k,+}^2$ includes the penalty from each pull parameter for neutrino and anti-neutrino events.

R. Thiru Senthil (IMSc)

 u_{τ} Studies at ICAL in INO

NuFact - 5 Aug 2022

2 / 27

Pull (π)	Description	Error
π_{tilt}	Tilt error	5%
π_{zenith}	Zenith angle dependence	5%
π_{norm}	Flux normalization	20%
π_{σ}	Cross section	10%
π_D	Detector response	5%

Hardron energy bins and Zenith angle bins

Bin	Energy	Bin width
	(GeV)	(GeV)
1	1–3	2
2	3–6	3
3	6–9	3
4	9–13	4
5	13–18	5
6	18–25	7
7	25–35	10
8	35–50	15

$$\Delta \chi^2 = \chi^2(\text{input}) - \chi^2(\text{par}) , \qquad (2)$$

- χ²(input) is the minimum χ² obtained when the theory events are calculated with the same value of the parameter as its input value.
- $\chi^2({\rm par})$ is the minimum χ^2 obtained when a different theory value of the parameter is used.

- As part of systematics calculation, we have developed a program 'Invertor' for fast invertion large matrices.
- It is general purpose program written in C to calculate inversion of matrices analytically.
- As example, inversion of matrices of order 100, 1000 are computed in 6ms and 5.24s respectively in Intel i7 6700 CPU, 8GB RAM machine (Common modern computer).

Sensitivity to the presence of $u_{ au}$

Presence of CC tau events over NC background

Figure: NC and CC-tau events in reconstructed E_{hadron} bins and the ratio of the CC tau events to the NC events.

NuFact - 5 Aug 2022

Angular Bins	Including Systematics	$\Delta \chi^2$	$\sigma = \sqrt{\Delta \chi^2}$
2	No	35.34	5.95
2	Yes	13.06	3.61
2	Yes* (0.7)	14.95	3.87
2	Yes* (0.5)	16.46	4.06
1	No	27.50	5.24
1	Yes	7.90	2.81

(* The effects of a reduction in tilt and zenith angle uncertainties to 70% and 50%)

Sensitivity of u_{τ} events to the oscillation parameters θ_{23} and Δm^2

Effect of zenith angle bins

Sensitivity of $u_{ au}$ events to $\sin^2 heta_{23}$ and Δm^2

Combined analysis of standard muon events and tau events

Sensitivity to oscillation parameters in combined analysis

NuFact - 5 Aug 2022

Sensitivity to the octant of $\sin^2 \theta_{23}$ in combined analysis

- The presence of ν_τ events at the ICAL detector in INO is closer to 4σ for 10 years period with systematics.
- ν_{τ} events have sensitivity to the oscillation parameter θ_{23} and $|\Delta m^2|$.
- Combined analysis of ν_{μ} and ν_{τ} events improves the precision measurement of $\sin^2 \theta_{23}$ and its *octant* significantly and Δm^2 moderately.

For further reading: arXiv:2203.09863 [hep-ph] Contact: rtsenthil@imsc.res.in

THANK YOU