Contribution ID: 91 Type: Talk

Tension between the T2K and NOvA appearance data and hints to new physics

Friday, 5 August 2022 17:16 (22 minutes)

The tension between the T2K and NOvA long-baseline experiments arises mostly due to the mismatch in the $\nu_{\mu} \to \nu_{e}$ and $\bar{\nu}_{\mu} \to \bar{\nu}_{e}$ appearance data. Assuming vacuum oscillation as the reference point, with maximal θ_{23} and $\delta_{CP}=0$, we compute the $\nu_{e}/\bar{\nu}_{e}$ appearance events for each of the experiments. T2K observes a large excess in the ν_{e} appearance event sample compared to the expected ν_{e} events at the reference point, whereas NOvA observes a moderate excess. The large excess in T2K dictates that δ_{CP} be anchored at -90° and that $\theta_{23}>\pi/4$ with a preference for normal hierarchy (NH). The moderate excess at NOvA leads to two degenerate solutions: (a) NH, $0<\delta_{CP}<180^{\circ}$, and $\theta_{23}>\pi/4$; (b) inverted hierarchy (IH) with $-180^{\circ}<\delta_{CP}<0$, and $\theta_{23}>\pi/4$. This is the main cause of tension between the two experiments. We show that beyond the standard model (BSM) physics scenarios such as non-unitary neutrino mixing, Lorentz invariance violation, and non-standard neutrino interactions, may resolve the tension.

Attendance type

Virtual presentation

Primary authors: RAHAMAN, Ushak (University of Johannesburg); RAZZAQUE, Soebur (University of

Johannesburg); UMASANKAR, Sankagiri (Indian Institute of Technology Bombay)

Presenter: RAHAMAN, Ushak (University of Johannesburg) **Session Classification:** WG1: Neutrino Oscillations

Track Classification: WG1: Neutrino Oscillation Physics