Oscillation and decay of neutrinos in matter: an analytic treatment

Dibya S. Chattopadhyay

Tata Institute of Fundamental Research

4 Aug 2022 NuFACT 2022, Utah, USA

Based on: Phys. Rev. Lett. **129**, no.1, 011802 (2022) (arXiv:2111.13128 [hep-ph]) and arXiv:2204.05803 [hep-ph]

In collaboration with Amol Dighe, Kaustav Chakraborty, Srubabati Goswami, SM Lakshmi

Objective

If neutrinos decay, the effective non-Hermitian Hamiltonian needs to be treated carefully due to subtle issues regarding its mass and decay components.

We derive **compact analytic expressions** for 2-flavor 3-flavor neutrino probabilities with:

• Invisible decay + Oscillation + Explicit matter effects included.

Useful for:

- 1. Long-baseline neutrino experiments
- 2. Atmospheric neutrino experiments
- 3. Reactor anti-neutrino experiments

The problem

• The inclusion of decay makes the effective Hamiltonian non-Hermitian

$$\mathcal{H} = H - i\Gamma/2 \qquad \Gamma_{ij} = 2\pi \sum_{k} \langle \nu_i | \mathcal{H}' | \phi_k \rangle \langle \phi_k | \mathcal{H}' | \nu_j \rangle \, \delta(E_k - E_\nu)$$

• The decay and the mass eigenstates need not be the same \Rightarrow Mismatch

$$[H,\Gamma] \neq 0$$

• Even if there's no mismatch in vacuum, due to matter effects, the components will invariably become non-commuting.

Inevitability of the off-diagonal elements

• In the **2-flavor** approximation:

$$\mathcal{H}_{m} = \begin{pmatrix} a_{1} - ib_{1} & -\frac{1}{2}i\gamma e^{i\chi} \\ -\frac{1}{2}i\gamma e^{-i\chi} & a_{2} - ib_{2} \end{pmatrix}$$

• Even if only ν_2 in vacuum decays, with $\alpha_2 = m_2/\tau_2$, in matter, we get:

$$a_{1,2} = \frac{\tilde{m}_{1,2}^2}{2E}$$
 , $b_{1,2} = \frac{\alpha_2}{4E} [1 \mp \cos[2(\theta - \theta_m)]$, $\gamma = \frac{\alpha_2}{2E} \sin[2(\theta - \theta_m)]$.

- The off-diagonal term γ is generated, even though it was absent in vacuum.
- Inevitable "mismatch" in matter.
- We develop techniques using Zassenhaus (inverse BCH) expansion and Cayley-Hamilton theorem.

2 flavor expressions

- We use the inverse BCH (Zassenhaus) expansion to calculate the probabilities.
- The survival probability of a neutrino flavor is

$$\Delta_a \equiv a_2 - a_1, \ \Delta_b \equiv b_2 - b_1$$

$$P_{\alpha\alpha} = \frac{e^{-(b_1 + b_2)t}}{2} \left[(1 + |A|^2) \cosh(\Delta_b t) + (1 - |A|^2) \cos(\Delta_a t) - 2 \text{Re}(A) \sinh(\Delta_b t) + 2 \text{Im}(A) \sin(\Delta_a t) \right].$$

The conversion probability is given by

$$P_{\beta\alpha} = \frac{e^{-(b_1 + b_2)t}}{2} |B(\chi)|^2 \left[\cosh(\Delta_b t) - \cos(\Delta_a t) \right].$$

Term	Expression
$\operatorname{Re}(A)$	$-\cos 2\theta_m + \bar{\gamma}\bar{\Delta}_b \sin 2\theta_m \cos \chi$
$\mathrm{Im}(A)$	$-ar{\gamma}ar{\Delta}_a\sin2 heta_m\cos\chi$
$ A ^2$	$\cos^2 2\theta_m - 2\bar{\gamma}\bar{\Delta}_b \sin 2\theta_m \cos 2\theta_m \cos \chi$
$ B ^2$	$\sin^2 2\theta_m + 2\bar{\gamma}\sin 2\theta_m \left(\bar{\Delta}_a \sin \chi + \bar{\Delta}_b \cos 2\theta_m \cos \chi\right)$

• Within the 2 flavor approximation, it is possible to get exact results as well.

2 flavor plots

- L=295 km, $E\sim 1$ GeV, $\Delta_a=2.56\times 10^{-3}$ eV $^2/(2E)$, $\theta_m=45^\circ$, $(b_1,b_2,\gamma)=(3.6.8)\times 10^{-5}$ eV $^2/(2E)$, $\chi=\pi/4$.
- Now, let's move on to the more realistic 3-flavor scenario.

Case I: Decay of ν_3 only

- Strong constraints from solar neutrino data on ν_1 and ν_2 decay.
- Therefore, the special case where only ν_3 mass eigenstate in vacuum decays:

$$\mathcal{H}_{f}^{(\gamma_{3})} = \frac{1}{2E_{\nu}}U \left[\Delta m_{31}^{2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} - i \Delta m_{31}^{2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \gamma_{3} \end{pmatrix} \right] U^{\dagger} + \begin{pmatrix} V_{cc} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

• Here, γ_i is defined such that $\gamma_i \Delta m_{31}^2 = m_i/\tau_i$.

 $\alpha \equiv \Delta m_{21}^2 / \Delta m_{31}^2$

• Current long-baseline constraints†: $\tau_3/m_3 > 1.5 \times 10^{-12}$ s/eV (3 σ)

†arXiv:1805.01848

Case II: The general decay matrix I

- The solar neutrino constraint on decay is for neutrinos propagating in vacuum.
- For matter induced decay, the solar neutrino constraint may be relaxed.
- For the general decay matrix Γ we have:

$$\mathcal{H}_{f}^{(\Gamma)} = U \begin{bmatrix} \Delta m_{31}^{2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} - \frac{i}{2} \Gamma \end{bmatrix} U^{\dagger} + \begin{pmatrix} V_{cc} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

$$\Gamma = \frac{\Delta m_{31}^{2}}{E_{\nu}} \begin{pmatrix} \gamma_{1} & \frac{1}{2} \gamma_{12} e^{i\chi_{12}} & \frac{1}{2} \gamma_{13} e^{i\chi_{13}} \\ \frac{1}{2} \gamma_{12} e^{-i\chi_{12}} & \gamma_{2} & \frac{1}{2} \gamma_{23} e^{i\chi_{23}} \\ \frac{1}{2} \gamma_{13} e^{-i\chi_{13}} & \frac{1}{2} \gamma_{23} e^{-i\chi_{23}} & \gamma_{3} \end{pmatrix}.$$

$$\Gamma = \frac{\Delta m_{31}^2}{E_{\nu}} \begin{pmatrix} \gamma_1 & \frac{1}{2} \gamma_{12} e^{i\chi_{12}} & \frac{1}{2} \gamma_{13} e^{i\chi_{13}} \\ \frac{1}{2} \gamma_{12} e^{-i\chi_{12}} & \gamma_2 & \frac{1}{2} \gamma_{23} e^{i\chi_{23}} \\ \frac{1}{2} \gamma_{13} e^{-i\chi_{13}} & \frac{1}{2} \gamma_{23} e^{-i\chi_{23}} & \gamma_3 \end{pmatrix}.$$

Formalism and scales

$$\alpha \approx 0.03 \simeq O(\lambda^2)$$
, $s_{13} \equiv \sin \theta_{13} \simeq 0.14 \simeq O(\lambda)$.

- Decay has not been observed yet over the timescale of oscillations.
- Decay must be subleading to oscillation, i.e. decay length must be larger.
- Therefore, $\gamma_3 < O(1)$ and γ_1 , $\gamma_2 < O(\alpha)$.

$$\gamma_3 \sim O(\lambda)$$
, $\gamma_1, \gamma_2 \sim O(\lambda^3)$.

Decay matrix should be positive definite.

$$\gamma_{12} \sim O(\lambda^3)$$
, $\gamma_{13}, \gamma_{23} \sim O(\lambda^2)$.

Book-keeping parameter

Probabilities expanded in s_{13} , α and γ_3

$$\begin{split} P_{\mu\mu}^{(0)} &= 1 - \sin^2 2\theta_{23} \sin^2 \Delta - \frac{2}{A-1} s_{13}^2 \sin^2 2\theta_{23} \\ &\times \left(\sin \Delta \cos A \Delta \frac{\sin[(A-1)\Delta]}{A-1} - \frac{A}{2} \Delta \sin 2\Delta \right) \\ &- 4 s_{13}^2 s_{23}^2 \frac{\sin^2[(A-1)\Delta]}{(A-1)^2} \\ &+ \alpha c_{12}^2 \sin^2 2\theta_{23} \Delta \sin 2\Delta + O(\lambda^3), \\ P_{\mu\mu}^{(\gamma_3)} &= -\gamma_3 \Delta \left(\sin^2 2\theta_{23} \cos 2\Delta + 4 s_{23}^4 \right) \\ &+ \gamma_3^2 \Delta^2 \left(\sin^2 2\theta_{23} \cos 2\Delta + 8 s_{23}^4 \right) + O(\lambda^3), \\ P_{\mu\mu}^{(\Gamma)} &= \sin 2\theta_{23} \left(\gamma_{13} s_{12} \cos \chi_{13} - \gamma_{23} c_{12} \cos \chi_{23} \right) \\ &\times \sin 2\Delta + O(\lambda^3) \; . \end{split}$$

with
$$P_{\mu e}=P_{e\mu}(\delta_{\rm CP} \to -\delta_{\rm CP}, \chi_{ij} \to -\chi_{ij}).$$

$$A=\frac{2E_{\nu}V_{cc}}{\Delta m_{31}^2}, \Delta=\frac{\Delta m_{31}^2L}{4E_{\nu}}$$

$$P_{\alpha\beta} = P_{\alpha\beta}^{(0)} + P_{\alpha\beta}^{(\gamma_3)} + P_{\alpha\beta}^{(\Gamma)}$$

$$\begin{split} P_{e\mu}^{(0)} = & 4s_{13}^2 s_{23}^2 \frac{\sin^2[(A-1)\Delta]}{(A-1)^2} \\ & + 2\alpha s_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos (\Delta - \delta_{\text{CP}}) \\ & \times \frac{\sin[(A-1)\Delta]}{A-1} \frac{\sin A\Delta}{A} + O(\lambda^4) \;, \\ P_{e\mu}^{(\gamma_3)} = & -8\gamma_3 \, s_{13}^2 s_{23}^2 \; \Delta \, \frac{\sin^2[(A-1)\Delta]}{(A-1)^2} + O(\lambda^4) \;, \\ P_{e\mu}^{(\Gamma)} = & -4s_{13} s_{23}^2 \, (\gamma_{23} \, s_{12} \sin \left[\delta_{\text{CP}} + \chi_{23}\right] \\ & + \gamma_{13} \, c_{12} \sin \left[\delta_{\text{CP}} + \chi_{13}\right]) \, \frac{\sin^2[(A-1)\Delta]}{(A-1)^2} \\ & + O(\lambda^4) \;, \end{split}$$

Key observations

• The leading effect of ν_3 decay at the muon neutrino survival channel.

No matter effects in the muon neutrino survival channel.

• In the conversion channel, the effect of off-diagonal decay terms are as important as effects of γ_3 .

Matter dependence in the conversion channel decay terms.

Probabilities expanded in s_{13} and α , exact in γ_3

$$P_{\mu\mu} = \left| c_{23}^2 + s_{23}^2 e^{-2i(1-i\gamma_3)\Delta} - 2i\alpha c_{12}^2 c_{23}^2 \Delta + s_{13}^2 s_{23}^2 \left(e^{-2iA\Delta} \frac{(1-i\gamma_3)^2}{[A-(1-i\gamma_3)]^2} + e^{-2i(1-i\gamma_3)\Delta} \left[2iA\Delta \left[A - (1-i\gamma_3) \right] - (1-i\gamma_3) \right] \frac{1-i\gamma_3}{[A-(1-i\gamma_3)]^2} \right) \right|^2 + O(\lambda^3) .$$

$$\begin{split} P_{\mu\mu}^{\text{leading}} &= c_{23}^4 + s_{23}^4 \, e^{-4\gamma_3\Delta} + 2 s_{23}^2 c_{23}^2 \cos(2\Delta) e^{-2\gamma_3\Delta} \\ &= 1 - \sin^2 2\theta_{23} \sin^2 \Delta - s_{23}^4 \left(1 - e^{-4\gamma_3\Delta}\right) - 2 s_{23}^2 c_{23}^2 \cos(2\Delta) \left(1 - e^{-2\gamma_3\Delta}\right) \ . \end{split}$$

- Exact dependence on γ_3 .
- The region of validity increases to $\alpha\Delta\lesssim 1$ from $\gamma_3\Delta\lesssim 1$.
- Valid at lower energies.

$$P_{e\mu} = s_{13}^{2} s_{23}^{2} \left(1 + e^{-4\gamma_{3}\Delta} - 2e^{-2\gamma_{3}\Delta} \cos[2(A-1)\Delta] \right) \frac{\gamma_{3}^{2} + 1}{(A-1)^{2} + \gamma_{3}^{2}}$$

$$+ \alpha s_{13} \sin 2\theta_{12} \sin 2\theta_{23} \frac{\sin A\Delta}{A}$$

$$\times \left[\left(\sin \left[(A-2)\Delta + \delta_{\text{CP}} \right] e^{-2\gamma_{3}\Delta} + \sin \left[A\Delta - \delta_{\text{CP}} \right] \right) \frac{(A-1) - \gamma_{3}^{2}}{(A-1)^{2} + \gamma_{3}^{2}}$$

$$+ \gamma_{3} \left(\cos \left[A\Delta - \delta_{\text{CP}} \right] - \cos \left[(A-2)\Delta + \delta_{\text{CP}} \right] e^{-2\gamma_{3}\Delta} \right) \frac{A}{(A-1)^{2} + \gamma_{3}^{2}} \right] + O(\lambda^{4}) .$$

Analytic vs Numerical Comparison

- How accurate are our expressions?
- Let us define: $\Delta P_{\alpha\beta} = P_{\alpha\beta} (\text{analytic}) P_{\alpha\beta} (\text{numerical}) .$
- We plot for the values:

$$\Delta m_{21}^2 = 7.37 \times 10^{-5} \text{ eV}^2, \ \Delta m_{31}^2 = 2.56 \times 10^{-3} \text{ eV}^2,$$

$$\theta_{12} = 33^{\circ}, \ \theta_{23} \simeq 45^{\circ}, \ \theta_{13} \simeq 8.5^{\circ}, \ \delta_{CP} = 0^{\circ}, \gamma_3 = 0.1$$

• For the expressions to be useful for future long baseline experiments, we need an absolute accuracy of ~1% in the conversion channel.

Dibya S. Chattopadhyay (TIFR), NuFACT 2022

Oscillation and decay of neutrinos in matter: an analytic treatment

7000 km

- OMSD approx. is very accurate.
- Absolute accuracy ~ 1%
- Depends on the value of δ_{CP} taken.

Oscillation and decay of neutrinos in matter: an analytic treatment

General Baseline

Increase of probability due to decay!

The first two oscillation dips in $P_{\mu\mu}$

$$P_{\mu\mu}^{\text{leading}}(\text{dip}) = 1 - \sin^2 2\theta_{23} - s_{23}^4 \left(1 - e^{-4\gamma_3 \Delta}\right) + 2s_{23}^2 c_{23}^2 \left(1 - e^{-2\gamma_3 \Delta}\right)$$

$$P_{\mu\mu}(\text{first dip}) \simeq P_{\mu\mu}^{\text{leading}}(\Delta \simeq \pi/2) = \frac{1}{4} \left(1 - e^{-\pi\gamma_3}\right)^2 \ge 0$$

$$P_{\mu\mu}(\text{second dip}) \simeq P_{\mu\mu}^{\text{leading}}(\Delta \simeq 3\pi/2) \simeq \frac{1}{4} \left(1 - e^{-3\pi\gamma_3}\right)^2 \geq 0$$

- Increase in probability at first and second osc. dips due to ν_3 decay.
- For $\gamma_3 = 0.1$, increase of ~0.02 at first and ~0.1 at second oscillation dip.
- Explained by our analytic expressions (like a damped oscillator).
- The second osc. dip at: $E_{\nu} \simeq 0.69 \, (L/1000 \, {\rm km})$ GeV. Hence possible to observe at DUNE.

Take Home Message

- If neutrinos decay, **mismatch** between mass and decay eigenstates is **inevitable**.
- We have presented the modifications to the neutrino probabilities due to possible invisible decay in matter, in a compact analytic form.
- Analytic expressions can explain many features of the probabilities: for example, $P_{\mu\mu}$ at oscillation dips increases due to ν_3 decay.

Thank you for your attention

- 1. <u>D. S. Chattopadhyay</u>, K. Chakraborty, A. Dighe, S. Goswami and S. M. Lakshmi, "Neutrino Propagation When Mass Eigenstates and Decay Eigenstates Mismatch", **Phys. Rev. Lett. 129, no.1, 011802 (2022)** (arXiv:2111.13128 [hep-ph])
- 2. <u>Dibya S. Chattopadhyay</u>, Kaustav Chakraborty, Amol Dighe, Srubabati Goswami, "Analytic treatment of 3-flavor neutrino oscillation and decay in matter", arXiv:2204.05803 [hep-ph]

bit.ly/dschattopadhyay

d.s.chattopadhyay@theory.tifr.res.in