Majorana Phase in Neutrino Oscillation

23rd International Workshop on Neutrinos from Accelerators NuFact-2022, Utah

4 August 2022

Khushboo Dixit

Based on the preprint arxiv:2207.09480 by Khushboo Dixit, Akhila Kumar Pradhan, S. Uma Sankar

Department of Physics Indian Institute of Technology Bombay Mumbai, Maharashtra, India

<ロ> <母> <母> < => < => < => < => のQC

- Motivation
- Ø Majorana phase in neutrino oscillations
- **③** CP and CPT properties of oscillation probabilities

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□

Introducing Majorana Phase ϕ

- We restrict ourselves to two flavor oscillations. The flavor states ν_e and ν_μ mix to form the mass eigenstates ν_1 and ν_2 with masses m_1 and m_2 , respectively.
- In general, flavour states ν_{α} are related to mass eigenstates ν_i as

$$\nu_{\alpha} = U \ \nu_i = O \ U_{ph} \ \nu_i,$$

where $\nu_{\alpha} = (\nu_e \quad \nu_{\mu})^T$ and $\nu_i = (\nu_1 \quad \nu_2)^T$ and

$$O = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \qquad U_{ph} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix}. \tag{1}$$

- The phase ϕ is unphysical if neutrinos are Dirac particles but is physical if they are Majorana.
- However, both vacuum and matter modified oscillation probabilities are independent of ϕ whether neutrinos are Dirac or Majorana.

- Benatti and Floreanini (PRD **64** (2001) 085015) considered a novel form of neutrino decoherence with an off-diagonal term in the decoherence matrix.
- For such decoherence, the oscillation probabilities depend on ϕ .

We ask "what are the other possibilities under which the Majorana phase ϕ appears in neutrino oscillation probabilities?"

The Hamiltonian in mass eigenbasis

$$\mathcal{H} = \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix} = \frac{(a_1 + a_2)}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} -(a_2 - a_1) & 0 \\ 0 & a_2 - a_1 \end{pmatrix},$$

where $a_1 = m_1^2/2E$ and $a_2 = m_2^2/2E$, $m_i \rightarrow$ mass eigenvalues, $E \rightarrow$ energy.

Evolution equations in mass eigenbasis

$$i\frac{d}{dt}\nu_i(t) = \left[\frac{(a_1+a_2)}{2}\sigma_0 - \frac{a_2-a_1}{2}\sigma_z\right]\nu_i(t),$$
(2)

where, $\sigma_0 \equiv \mathbf{I}_{2 \times 2}$ and σ_z is the diagonal Pauli matrix.

In flavor basis ($\nu_i(0) = U^{\dagger}_{mix} \nu_f(0) = U^{\dagger}_{ph} O^T \nu_f(0)$)

$$i\frac{d}{dt}\nu_{\alpha}(t) = \left[\frac{(a_1+a_2)}{2}\sigma_0 - \frac{(a_2-a_1)}{2}OU_{\rho h}\sigma_z U_{\rho h}^{\dagger}O^{T}\right]\nu_{\alpha}(t).$$
(3)

Since

$$OU_{ph}\sigma_z U_{ph}^{\dagger}O^T = O\sigma_z O^T \qquad ([U_{ph},\sigma_z]=0)$$

 $\Rightarrow U_{ph}$ matrix containing ϕ is gone!

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Most general neutrino evolution

If,
$$\mathcal{H} = ((-\frac{(a_2-a_1)}{2})\sigma_z + b\sigma_x + c\sigma_y)$$
$$OU_{ph}[-\frac{(a_2-a_1)}{2}\sigma_z + b\sigma_x + c\sigma_y]U_{Ph}^{\dagger}O^{T} \neq O\sigma_zO^{T}],$$

where σ_x and σ_y are the off-diagonal Pauli matrices. It is trivial to see

$$[U_{ph}, \sigma_x] \neq 0$$
 and $[U_{ph}, \sigma_y] \neq 0$

• We consider the case of the most general Hamiltonian in neutrino mass basis including the decay terms

$$\mathcal{H} = M - i\Gamma/2,$$

where M and Γ are hemitian matrices.

- Presence of Γ makes ${\cal H}$ non-hermitian.
- Since \mathcal{H} is in mass basis, M is diagonal, but Γ need not be in general.
- We assume that the decay eigenstates are not the same as mass eigenstates.
- Hence Γ is non-diagonal and does not commute with M.

<ロト < 母 ト < 臣 ト < 臣 ト 三国 = のQ()

• We consider the following form of the Hamiltonian

$$\mathcal{H} = \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix} - i \begin{pmatrix} b_1 & \frac{1}{2}\eta e^{i\xi} \\ \frac{1}{2}\eta e^{-i\xi} & b_2 \end{pmatrix}.$$

- Γ should be positive semi-definite $(b_i > 0 \text{ and } \eta \leq 4b_1^2b_2^2)$.
- When Γ is non-diagonal ($\eta \neq 0$), *i.e.*, the mass eigenstates are **not** decay eigenstates, the evolution of mass eigenstates

$$i\frac{d}{dt}\nu_i(t) = \left[\frac{(a_1+a_2)}{2}\sigma_0 - \frac{(a_2-a_1)}{2}\sigma_z - \frac{i}{2}\left((b_1+b_2)\sigma_0 + \vec{\sigma}.\vec{\Gamma}\right)\right] \nu_i(t),$$

where $\vec{\Gamma} = [\eta \cos \xi, -\eta \sin \xi, -(b_2 - b_1)].$

• The evolution equation in terms of flavor states is

$$egin{aligned} &irac{d}{dt}
u_lpha(t) = \left[rac{(a_1+a_2)}{2}\sigma_0 - rac{(a_2-a_1)}{2}O\sigma_z O^ au - rac{i}{2}(b_1+b_2)\sigma_0
ight. \ &-rac{i}{2}OU_{
hoh}(ec{\sigma}.ec{\Gamma})U^\dagger_{
hoh}O^ au
ight]
u_lpha(t). \end{aligned}$$

- And hence, ϕ also appears in oscillation probabilities.

<□> ▲□> ▲□> ▲□> ▲□> ▲□> ▲□> ▲□>

Neutrino oscillations with most general decay Hamiltonian

- Evolution operator $U = e^{-i\mathcal{H}t}$ can be expanded in the basis spanned by σ_0 and Pauli matrices σ_i .
- This expansion is parameterized by a complex 4-vector $n_{\mu} \equiv (n_0, \vec{n})$, with $n_{\mu} = Tr[(-i\mathcal{H}t).\sigma_{\mu}]/2$, where

$$n_{0} = -\frac{i}{2}(a_{1} + a_{2})t - \frac{1}{2}(b_{1} + b_{2})t, \quad n_{x} = -\frac{1}{2}t\eta\cos\xi,$$

$$n_{y} = \frac{1}{2}t\eta\sin\xi, \quad n_{z} = \frac{i}{2}(a_{2} - a_{1})t + \frac{1}{2}(b_{2} - b_{1})t.$$
(4)

 $\bullet\,$ The evolution matrix ${\cal U}$ is

$$\mathcal{U} = e^{n_0} \left[\cosh n \, \sigma_0 + \frac{\vec{n}.\vec{\sigma}}{n} \sinh n \right], \tag{5}$$

where

$$n = \sqrt{n_x^2 + n_y^2 + n_z^2} = \frac{t}{2}\sqrt{\eta^2 - (a_2 - a_1 - i(b_2 - b_1))^2}.$$
 (6)

evolution matrix in flavor basis $U_f = U_{mix} U U_{mix}^{-1}$.

Neutrino oscillation probabilities

• Neglecting terms of $\mathcal{O}(\eta^2)$ and higher order, we get the survival probabilities

$$P_{ee} = e^{-2bt} \left(P_{ee}^{vac} - \eta \cos(\xi - \phi) \mathcal{A} \right)$$
$$P_{\mu\mu} = e^{-2bt} \left(P_{\mu\mu}^{vac} + \eta \cos(\xi - \phi) \mathcal{A} \right)$$

and the oscillation probabilities

$$P_{e\mu} = e^{-2bt} \left(P_{e\mu}^{vac} + 2\eta \sin(\xi - \phi) \mathcal{B} \right)$$
$$P_{\mu e} = e^{-2bt} \left(P_{\mu e}^{vac} - 2\eta \sin(\xi - \phi) \mathcal{B} \right)$$

where

$$\mathcal{A} = \frac{\sin(2\theta) \sin[(a_2 - a_1)t]}{(a_2 - a_1)}$$
$$\mathcal{B} = \frac{\sin(2\theta) \sin^2[\frac{1}{2}(a_2 - a_1)t]}{(a_2 - a_1)}.$$
(7)

$$P_{e\mu}^{vac} = \sin^2 2\theta \sin^2 \left(\frac{(a_2 - a_1)t}{2} \right), \qquad a_2 - a_1 = \Delta m^2 / 2E.$$
 (8)

The relations between different vacuum oscillation probabilities, $P_{ee}^{vac} = 1 - P_{e\mu}^{vac} = P_{\mu\mu}^{vac}$ and $P_{\mu e}^{vac} = P_{e\mu}^{vac}$.

- Majorana phase ϕ appears in the probability expressions.
- This appearance is proportional to $\Gamma_{12} \propto \eta$.
- Unlike in vacuum oscillations $P_{ee} \neq P_{\mu\mu}$ and $P_{e\mu} \neq P_{\mu e}$.
- $P_{e\mu}$ and $P_{\mu e}$ are sensitive to the mass ordering.

<□> ▲□> ▲□> ▲□> ▲□> ▲□> ▲□> ▲□>

• For antineutrinos, we have

$$\bar{M} = M \text{ and } \bar{\Gamma} = \Gamma^*.$$
 (9)

• Hence, antineutrino probability expressions can be obtained by making the substitutions $\phi \rightarrow -\phi$ and $\xi \rightarrow -\xi$.

$$P_{\bar{e}\bar{e}} = e^{-2bt} \left(P_{\bar{e}\bar{e}}^{vac} - \eta \cos(\xi - \phi) \mathcal{A} \right) \quad \text{and} \quad P_{\bar{\mu}\bar{\mu}} = e^{-2bt} \left(P_{\bar{\mu}\bar{\mu}}^{vac} + \eta \cos(\xi - \phi) \mathcal{A} \right)$$

$$P_{ar{e}ar{\mu}} = e^{-2bt} \left(P^{vac}_{ar{e}ar{\mu}} - 2\eta \sin(\xi - \phi) \mathcal{B}
ight) \quad ext{and} \quad P_{ar{\mu}ar{e}} = e^{-2bt} \left(P^{vac}_{ar{\mu}ar{e}} + 2\eta \sin(\xi - \phi) \mathcal{B}
ight).$$

• We find $P_{\bar{e}\bar{e}} = P_{ee}$, $P_{\bar{\mu}\bar{\mu}} = P_{\mu\mu}$ and $P_{\bar{\mu}\bar{e}} = P_{e\mu}$, *i.e.*, *CPT* is conserved.

• However, there is CP-violation $(P_{\bar{e}\bar{\mu}} \neq P_{e\mu})$ and T-violation $(P_{\mu e} \neq P_{e\mu})$.

- The CP violating term in the oscillation probabilities is proportional to $\eta \sin(\xi \phi)$.
- There are three possibilities of CP-violation
 - **1** *CP*-violation in mass if $\eta \neq 0$ and $\xi = 0$, but $\phi \neq 0$
 - 2 *CP*-violation in decay if $\phi = 0$, but $\eta \neq 0$ and $\xi \neq 0$
 - **③** *CP*-violation in mass and decay if $\eta \neq 0$, $\xi \neq 0$ and $\phi \neq 0$
- \bullet Non-zero value of η is a necessary condition for $CP\mbox{-violation}$ but is not sufficient.
- For the two special cases,(i) $\phi = 0 = \xi$ and (ii) $\phi = \xi$, there is no *CP*-violation even when $\eta \neq 0$.
- However, the presence of η is discernible in the survival probabilities.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ④□ ◆○

- Scenario with off-diagonal decoherence also has ϕ dependent oscillation probabilities (Benatti et al., PRD **64** (2001) 085015)
- This scenario violates both CP and CPT

$$P_{\mu\mu} - P_{\bar{\mu}\bar{\mu}} = \sin^2 2\theta \frac{\alpha \sin(2\phi) \sinh(\sqrt{\alpha^2 - (\Delta m^2)^2} t)}{\sqrt{\alpha^2 - (\Delta m^2)^2}} e^{-\gamma t}$$

(Capolupo et al., PLB 792 (2019), 298-303)

• In our scenario also oscillation probabilities depend on ϕ but only *CP* and *T* are violated but *CPT* is conserved.

These different CPT properties distinguish these two scenarios of ϕ dependent neutrino oscillation probabilities.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のなの

- We look for scenarios in which the Majorana phase of two flavor oscillations can appear in neutrino oscillation probabilities.
- It was demonstrated earlier that off-diagonal terms in the decoherence matrix is one such scenario, which violates *CPT*.
- We found another scenario which involves neutrino decay, where the decay eigenstates are not the same as the mass eigenstates.
- In this scenario, CP is violated in general but CPT is conserved.
- The *CP*-violating terms in this scenario are sensitive to the neutrino mass ordering
- The two scenarios can be contrasted by their CPT properties.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ④□ ◆○

THANK YOU

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□

BACKUP SLIDES

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼ ◆○◆

Coherent forward scattering can alter oscillation patterns:

$$\begin{split} \nu_{e,\mu,\tau} + e^{-}, p, n &\rightarrow \nu_{e,\mu,\tau} + e^{-}, p, n \text{ (neutral current)} \\ \nu_{e} + e^{-} &\rightarrow \nu_{e} + e^{-} \text{ (charged current)} \\ H_{f} &= U_{mix} \begin{pmatrix} -\Delta m^{2}/4E & 0 \\ 0 & \Delta m^{2}/4E \end{pmatrix} U_{mix}^{\dagger} + V \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} \\ \epsilon_{e\mu}^{*} & \epsilon_{\mu\mu} \end{pmatrix} \end{split}$$

matter density potential $V = \sqrt{2}G_F N_e$

$$i\frac{d}{dt}\nu_{\alpha}(\mathbf{t}) = \frac{1}{4E} \left(-\Delta m^2 \mathbf{0}\sigma_z \mathbf{0}^T + 4EV\vec{\sigma}.\vec{\epsilon} \right) \nu_{\alpha}(\mathbf{t}),$$

 $\vec{\epsilon} = (\Re(\epsilon_{e\mu}), -\Im(\epsilon_{e\mu}), (1 + \epsilon_{ee} - \epsilon_{\mu\mu})/2); \epsilon_{\alpha\beta} \rightarrow \text{non-standard interaction (NSI)}$ strength

 \Rightarrow Majorana phase ϕ does not appear in matter modified oscillations.