

The Muon g-2 experiment: Current status and outlook

Brynn MacCoy, University of Washington On behalf of the Muon g-2 Collaboration August 2, 2022

Outline

- Introduction to Muon g-2
- Fermilab Muon g-2 experiment
 - Run 1 result and current status
 - How we measure a_{μ}
- a_u systematics and prospects for improvements
 - Analysis improvements
 - Hardware upgrades
 - Special measurements

Outline

- Introduction to Muon g-2
- Fermilab Muon g-2 experiment
 - Run 1 result and current status
 - How we measure a_u
- a_{μ} systematics and prospects for Run 2+ improvements
 - Analysis improvements
 - Hardware upgrades
 - Special measurements

Magnetic moments

Charged particle with angular momentum has magnetic moment

g=2

- Classical:
$$\vec{\mu} = \frac{q}{2m}\vec{L}$$

- Spin:
$$\vec{\mu} = g \frac{q}{2m} \vec{S}$$
, $\omega = g \frac{q}{2m} B$ Spins precess in external B field

- Dirac equation for spin $\frac{1}{2}$ particles:
- Loop corrections lead to deviation \to $g_{\mu}=2(1+a_{\mu})$ anomalous magnetic moment

Standard model prediction for muon a_{μ}

Theory prediction: include all Standard Model interactions

$$a_{\mu}^{SM} = a_{\mu}^{QED} + a_{\mu}^{EW} + a_{\mu}^{HVP} + a_{\mu}^{HLbL}$$

Value (Error) $\times 10^{11}$	Error [ppb]
116 584 718.931(104)	0.9
153.6(1.0)	9
6845(40)	343
92(18)	154
116 591 810(43)	369
	116 584 718.931(104) 153.6(1.0) 6845(40) 92(18)

Muon g-2 Theory Initiative recommended values T. Aoyama et. al., Phys. Rept. 887 (2020) 1-166

- Leptons, photons
- Terms to $O(\alpha^5)$

- W, Z, Higgs bosons

- Difficult because QCD nonperturbative
- HVP calculated from $e^+e^- \rightarrow$ hadrons cross section data
- HVP lattice calculations approaching required precision, in tension with data-driven calculations

Outline

- Introduction to Muon g-2
- Fermilab Muon g-2 experiment
 - Run 1 result and current status
 - How we measure a_{μ}
- a_{μ} systematics and prospects for improvements
 - Analysis improvements
 - Hardware upgrades
 - Special measurements

Fermilab Muon g-2 experiment

- 2006: BNL g-2 measured a_{ij} to 540 ppb
- 2021: FNAL g-2 measured a_{ij} to 460 ppb
- Combined 4.2 σ discrepancy between experiment and SM prediction
- Fermilab g-2 goal: 4× higher precision than BNL

- Experiment status
 - Finished Run 5 in July 2022
 - Run 2+ analysis in progress
 - Run 6 (final run) to start in fall

Measuring a_{μ} at Fermilab Muon g-2

- Inject polarized relativistic μ^+ into magnetic storage ring
- g > 2: anomalous precession

$$\vec{\omega}_a = \vec{\omega}_S - \vec{\omega}_C = -a_\mu \frac{e}{m} \vec{B}$$

measure with calorimeters

measure with NMR probes

• Express a_{μ} in terms of experimental constants,

with
$$B = \frac{\hbar \omega_p'}{2\mu_p'}$$
:

08/04/2022

$$a_{\mu} = \frac{g_{\mu}-2}{2} = \frac{\omega_a}{\widetilde{\omega}_p'} \frac{\mu_p'}{\mu_e} \frac{m_{\mu}}{m_e} \frac{g_e}{2}$$

measure other experiments

Constant	Source	Uncertainty [ppb]
g_e	Quantum cyclotron spectroscopy Hanneke et. al. 2011.	0.00028
m_{μ}/m_e	Muonium spectroscopy Liu et. al. 1999.	22
μ_p'/μ_e	Hydrogen spectroscopy, NMR Phillips et. al. 1977.	10.5
a_{μ}	Fermilab g-2 goal	140

Injecting the muons into the storage ring

Polarized 3.1 GeV μ^+ beam Pulsed μ^+ beam injected into g-2 storage ring

Storing the muons in the ring

- Storage ring magnet: 1.45 T
- Pulsed kicker magnets shift beam to nominal orbit
- Electrostatic quadrupoles focus beam vertically
- Straw tracking detectors reconstruct muon distribution

Measuring ω_a with calorimeters

• μ^+ decay to e^+

24 calorimeters measure energy and arrival time of decay e^+

Measuring ω_a with calorimeters

• μ^+ decay to e^+

 24 calorimeters measure energy and arrival time of decay e⁺

- Parity violation in weak interaction \rightarrow e^+ counts above energy threshold modulated by ω_a
- Extract ω_a from fit to e^+ hits vs. time

e^+ above E threshold vs time in fill

Extracting ω_a from e^+ histogram

e⁺ above E threshold vs time in fill

Extracting ω_a from e^+ histogram

Measuring ω_p with NMR probes

- Pulsed NMR probes measure ω_p = proton precession frequency ($\omega_p \propto B$)
- Trolley maps field all around ring every few days
- Fixed probes outside storage region monitor field drift between trolley runs
- Interpolate field map between trolley runs using fixed probes

Weighting ω_p with muon distribution

 $a_{\mu} \propto \frac{\omega_a}{\widetilde{\omega}_p}$

Average magnetic field experienced by muons

$$\widetilde{\omega}_p = \langle \omega_p(x, y, \phi) \times M(x, y, \phi) \rangle$$

- Weight field map by muon distribution in azimuthal slices
- Then average around the ring to get $\widetilde{\omega}_p$

Outline

- Introduction to Muon g-2
- Fermilab Muon g-2 experim
 - Run 1 result and current
 - How we measure a_{μ}
- a_μ systematics and prospect
 - Analysis improvements
 - Hardware upgrades
 - Special measurements

Now have all ingredients!

$$a_{\mu} \propto \frac{\omega_{a}}{\widetilde{\omega}_{p}}$$
 Anomalous precession frequency of muons Magnetic field experienced by muons

Outline

- Introduction to Muon g-2
- Fermilab Muon g-2 experiment
 - Run 1 result and current status
 - How we measure a_{μ}
- a_{μ} systematics and prospects for improvements
 - Analysis improvements
 - Hardware upgrades
 - Special measurements

Correcting the measured components

$$a_{\mu} \propto \frac{\omega_a^m}{\left\langle \omega_p(x, y, \phi) \times M(x, y, \phi) \right\rangle}$$

- ω_a^m : Measured precession frequency
- $\langle \omega_p(x,y,\phi) \times M(x,y,\phi) \rangle$: Muon-weighted magnetic field, $\widetilde{\omega}_p$

Now need to include corrections for both terms

• f_{clock} : ω_a clock blinding

- C terms: Beam dynamics corrections to ω_a
- f_{calib} : Absolute magnetic field calibration for ω_n
- **B** terms: Transient magnetic field corrections to ω_n

Run 1 uncertainties and corrections
$$a_{\mu} \propto \frac{f_{\text{clock}}\omega_a^m(1+C_e+C_p+C_{ml}+C_{pa})}{f_{\text{calib}}\langle\omega_p(x,y,\phi)\times M(x,y,\phi)\rangle(1+B_k+B_q)}$$

Run 1 uncertainties and corrections
$$a_{\mu} \propto \frac{f_{\text{clock}}\omega_a^m(1+C_e+C_p+C_{ml}+C_{pa})}{f_{\text{calib}}\langle\omega_p(x,y,\phi)\times M(x,y,\phi)\rangle(1+B_k+B_q)}$$

Run 1 uncertainties and corrections
$$a_{\mu} \propto \frac{f_{\text{clock}}\omega_a^m(1+C_e+C_p+C_{ml}+C_{pa})}{f_{\text{calib}}\langle\omega_p(x,y,\phi)\times M(x,y,\phi)\rangle(1+B_k+B_q)}$$

UNIVERSITY of WASHINGTON

Corrections for realistic beam

$$a_{\mu} \propto \frac{f_{\text{clock}}\omega_a^m (1 + C_e + C_p + C_{ml} + C_{pa})}{f_{\text{calib}}\langle \omega_p(x, y, \phi) \times M(x, y, \phi) \rangle (1 + B_k + B_q)}$$

- Original expression: Ideal horizontal (perpendicular) motion in vertical B field
- More complicated with realistic motion

$$\vec{\omega}_{a} = \frac{e}{m} \left[a_{\mu} \vec{B} - a_{\mu} \frac{\gamma}{\gamma + 1} (\vec{\beta} \cdot \vec{B}) \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \vec{\beta} \times \vec{E} \right]$$

Pitch correction

- Zero for motion $\vec{\beta} \perp \vec{B}$
- Nonzero due to vertical betatron oscillation caused by quads

E field correction

- Zero for nominal momentum 3.094 GeV
- Nonzero due to finite momentum spread

Reducing uncertainty on E field correction

- Uncertainty dominated by kicker effect
 - Varying kick strength over injection time → time dependence of stored momentum
 - Target uncertainty reduction: 53 ppb \rightarrow 25 ppb
- Improvements in Run 2/3
 - Momentum reconstruction algorithm improvements
 - Verified simulation inputs and benchmarks
- Measurement campaign in Run 4/5

New detector for direct in-beam measurement

Map momentum vs. injection time slice

UNIVERSITY of WASHINGTON

Phase-acceptance correction

$$a_{\mu} \propto \frac{f_{\text{clock}}\omega_a^m(1 + C_e + C_p + C_{ml} + C_{pa})}{f_{\text{calib}}\langle\omega_p(x, y, \phi) \times M(x, y, \phi)\rangle(1 + B_k + B_q)}$$

Any time-varying phase leads to incorrect extracted ω_a

$$N(t) = N_0 e^{-t/\tau} [1 + A\cos(\omega_a t + \phi(t))] \rightarrow \Delta\omega_a \approx -\frac{d\phi}{dt}$$

- Replaced damaged quad resistors in Run 2
- Significantly reduced correction and uncertainty
 - Run 1: 75 ppb → Run 2 aim: <20 ppb

 Calo acceptance depends on position → detected φ(t)

More hardware improvements: Kickers upgrade during Run 3

More hardware improvements: Kicker upgrade during Run 3

Reduced coherent betatron oscillation

More hardware improvements: Quadrupole RF in Run 5

- Apply horizontal RF field with electric quadrupoles
- Damp horizontal coherent betatron oscillation

Further reduced coherent betatron oscillation

Run 1 uncertainties and corrections
$$a_{\mu} \propto \frac{f_{\text{clock}}\omega_a^m(1+C_e+C_p+C_{ml}+C_{pa})}{f_{\text{calib}}\langle\omega_p(x,y,\phi)\times M(x,y,\phi)\rangle(1+B_k+B_q)}$$

Quad transient correction

Mechanical vibrations in pulsed electric quadrupoles → transient magnetic field perturbation

$a_{\mu} \propto \frac{f_{\text{clock}}\omega_a^m(1 + C_e + C_p + C_{ml} + C_{pa})}{f_{\text{calib}}\langle\omega_p(x, y, \phi) \times M(x, y, \phi)\rangle(1 + B_k + B_q)}$

- Run 1 uncertainty (92 ppb): incomplete azimuth / time map
- Run 2+: Extensive mapping around ring with special NMR probes + trolley; aim for <40 ppb uncertainty

Run 1 uncertainties and corrections
$$a_{\mu} \propto \frac{f_{\text{clock}}\omega_a^m(1+C_e+C_p+C_{ml}+C_{pa})}{f_{\text{calib}}\langle\omega_p(x,y,\phi)\times M(x,y,\phi)\rangle(1+B_k+B_q)}$$

Conclusions

- Muon g-2 measured a_{μ} to 460 ppb (Run 1) \rightarrow combined 4.2 σ tension with SM
- Run 2+3 data processed, analysis in progress
 - Expect ~2× total precision improvement with higher statistics
- Many analysis and hardware efforts to reduce systematic uncertainties
 - Expect to achieve 100 ppb systematic uncertainty goal
- Run 5 data collection finished in July 2022
 - Very close to 20× BNL statistics goal!
- Preparing for Run 6 to start in fall

