The Muon g-2 experiment: Current status and outlook Brynn MacCoy, University of Washington On behalf of the Muon g-2 Collaboration August 2, 2022 ### **Outline** - Introduction to Muon g-2 - Fermilab Muon g-2 experiment - Run 1 result and current status - How we measure a_{μ} - a_u systematics and prospects for improvements - Analysis improvements - Hardware upgrades - Special measurements ### **Outline** - Introduction to Muon g-2 - Fermilab Muon g-2 experiment - Run 1 result and current status - How we measure a_u - a_{μ} systematics and prospects for Run 2+ improvements - Analysis improvements - Hardware upgrades - Special measurements ## **Magnetic moments** Charged particle with angular momentum has magnetic moment g=2 - Classical: $$\vec{\mu} = \frac{q}{2m}\vec{L}$$ - Spin: $$\vec{\mu} = g \frac{q}{2m} \vec{S}$$, $\omega = g \frac{q}{2m} B$ Spins precess in external B field - Dirac equation for spin $\frac{1}{2}$ particles: - Loop corrections lead to deviation \to $g_{\mu}=2(1+a_{\mu})$ anomalous magnetic moment ## Standard model prediction for muon a_{μ} Theory prediction: include all Standard Model interactions $$a_{\mu}^{SM} = a_{\mu}^{QED} + a_{\mu}^{EW} + a_{\mu}^{HVP} + a_{\mu}^{HLbL}$$ | Value (Error) $\times 10^{11}$ | Error [ppb] | |--------------------------------|--| | 116 584 718.931(104) | 0.9 | | 153.6(1.0) | 9 | | 6845(40) | 343 | | 92(18) | 154 | | 116 591 810(43) | 369 | | | 116 584 718.931(104)
153.6(1.0)
6845(40)
92(18) | Muon g-2 Theory Initiative recommended values T. Aoyama et. al., Phys. Rept. 887 (2020) 1-166 - Leptons, photons - Terms to $O(\alpha^5)$ - W, Z, Higgs bosons - Difficult because QCD nonperturbative - HVP calculated from $e^+e^- \rightarrow$ hadrons cross section data - HVP lattice calculations approaching required precision, in tension with data-driven calculations ### **Outline** - Introduction to Muon g-2 - Fermilab Muon g-2 experiment - Run 1 result and current status - How we measure a_{μ} - a_{μ} systematics and prospects for improvements - Analysis improvements - Hardware upgrades - Special measurements ## Fermilab Muon g-2 experiment - 2006: BNL g-2 measured a_{ij} to 540 ppb - 2021: FNAL g-2 measured a_{ij} to 460 ppb - Combined 4.2 σ discrepancy between experiment and SM prediction - Fermilab g-2 goal: 4× higher precision than BNL - Experiment status - Finished Run 5 in July 2022 - Run 2+ analysis in progress - Run 6 (final run) to start in fall ## Measuring a_{μ} at Fermilab Muon g-2 - Inject polarized relativistic μ^+ into magnetic storage ring - g > 2: anomalous precession $$\vec{\omega}_a = \vec{\omega}_S - \vec{\omega}_C = -a_\mu \frac{e}{m} \vec{B}$$ measure with calorimeters measure with NMR probes • Express a_{μ} in terms of experimental constants, with $$B = \frac{\hbar \omega_p'}{2\mu_p'}$$: 08/04/2022 $$a_{\mu} = \frac{g_{\mu}-2}{2} = \frac{\omega_a}{\widetilde{\omega}_p'} \frac{\mu_p'}{\mu_e} \frac{m_{\mu}}{m_e} \frac{g_e}{2}$$ measure other experiments | Constant | Source | Uncertainty [ppb] | |----------------|--|-------------------| | g_e | Quantum cyclotron spectroscopy Hanneke et. al. 2011. | 0.00028 | | m_{μ}/m_e | Muonium spectroscopy
Liu et. al. 1999. | 22 | | μ_p'/μ_e | Hydrogen spectroscopy, NMR Phillips et. al. 1977. | 10.5 | | a_{μ} | Fermilab g-2 goal | 140 | ## Injecting the muons into the storage ring Polarized 3.1 GeV μ^+ beam Pulsed μ^+ beam injected into g-2 storage ring ## Storing the muons in the ring - Storage ring magnet: 1.45 T - Pulsed kicker magnets shift beam to nominal orbit - Electrostatic quadrupoles focus beam vertically - Straw tracking detectors reconstruct muon distribution Measuring ω_a with calorimeters • μ^+ decay to e^+ 24 calorimeters measure energy and arrival time of decay e^+ Measuring ω_a with calorimeters • μ^+ decay to e^+ 24 calorimeters measure energy and arrival time of decay e⁺ - Parity violation in weak interaction \rightarrow e^+ counts above energy threshold modulated by ω_a - Extract ω_a from fit to e^+ hits vs. time ### e^+ above E threshold vs time in fill ## Extracting ω_a from e^+ histogram e⁺ above E threshold vs time in fill ## Extracting ω_a from e^+ histogram ## Measuring ω_p with NMR probes - Pulsed NMR probes measure ω_p = proton precession frequency ($\omega_p \propto B$) - Trolley maps field all around ring every few days - Fixed probes outside storage region monitor field drift between trolley runs - Interpolate field map between trolley runs using fixed probes ## Weighting ω_p with muon distribution $a_{\mu} \propto \frac{\omega_a}{\widetilde{\omega}_p}$ Average magnetic field experienced by muons $$\widetilde{\omega}_p = \langle \omega_p(x, y, \phi) \times M(x, y, \phi) \rangle$$ - Weight field map by muon distribution in azimuthal slices - Then average around the ring to get $\widetilde{\omega}_p$ ### **Outline** - Introduction to Muon g-2 - Fermilab Muon g-2 experim - Run 1 result and current - How we measure a_{μ} - a_μ systematics and prospect - Analysis improvements - Hardware upgrades - Special measurements Now have all ingredients! $$a_{\mu} \propto \frac{\omega_{a}}{\widetilde{\omega}_{p}}$$ Anomalous precession frequency of muons Magnetic field experienced by muons ### **Outline** - Introduction to Muon g-2 - Fermilab Muon g-2 experiment - Run 1 result and current status - How we measure a_{μ} - a_{μ} systematics and prospects for improvements - Analysis improvements - Hardware upgrades - Special measurements ## **Correcting the measured components** $$a_{\mu} \propto \frac{\omega_a^m}{\left\langle \omega_p(x, y, \phi) \times M(x, y, \phi) \right\rangle}$$ - ω_a^m : Measured precession frequency - $\langle \omega_p(x,y,\phi) \times M(x,y,\phi) \rangle$: Muon-weighted magnetic field, $\widetilde{\omega}_p$ ### Now need to include corrections for both terms • f_{clock} : ω_a clock blinding - C terms: Beam dynamics corrections to ω_a - f_{calib} : Absolute magnetic field calibration for ω_n - **B** terms: Transient magnetic field corrections to ω_n Run 1 uncertainties and corrections $$a_{\mu} \propto \frac{f_{\text{clock}}\omega_a^m(1+C_e+C_p+C_{ml}+C_{pa})}{f_{\text{calib}}\langle\omega_p(x,y,\phi)\times M(x,y,\phi)\rangle(1+B_k+B_q)}$$ Run 1 uncertainties and corrections $$a_{\mu} \propto \frac{f_{\text{clock}}\omega_a^m(1+C_e+C_p+C_{ml}+C_{pa})}{f_{\text{calib}}\langle\omega_p(x,y,\phi)\times M(x,y,\phi)\rangle(1+B_k+B_q)}$$ Run 1 uncertainties and corrections $$a_{\mu} \propto \frac{f_{\text{clock}}\omega_a^m(1+C_e+C_p+C_{ml}+C_{pa})}{f_{\text{calib}}\langle\omega_p(x,y,\phi)\times M(x,y,\phi)\rangle(1+B_k+B_q)}$$ UNIVERSITY of WASHINGTON ### **Corrections for realistic beam** $$a_{\mu} \propto \frac{f_{\text{clock}}\omega_a^m (1 + C_e + C_p + C_{ml} + C_{pa})}{f_{\text{calib}}\langle \omega_p(x, y, \phi) \times M(x, y, \phi) \rangle (1 + B_k + B_q)}$$ - Original expression: Ideal horizontal (perpendicular) motion in vertical B field - More complicated with realistic motion $$\vec{\omega}_{a} = \frac{e}{m} \left[a_{\mu} \vec{B} - a_{\mu} \frac{\gamma}{\gamma + 1} (\vec{\beta} \cdot \vec{B}) \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \vec{\beta} \times \vec{E} \right]$$ ### Pitch correction - Zero for motion $\vec{\beta} \perp \vec{B}$ - Nonzero due to vertical betatron oscillation caused by quads ### E field correction - Zero for nominal momentum 3.094 GeV - Nonzero due to finite momentum spread ## Reducing uncertainty on E field correction - Uncertainty dominated by kicker effect - Varying kick strength over injection time → time dependence of stored momentum - Target uncertainty reduction: 53 ppb \rightarrow 25 ppb - Improvements in Run 2/3 - Momentum reconstruction algorithm improvements - Verified simulation inputs and benchmarks - Measurement campaign in Run 4/5 ### New detector for direct in-beam measurement ### Map momentum vs. injection time slice UNIVERSITY of WASHINGTON ## **Phase-acceptance correction** $$a_{\mu} \propto \frac{f_{\text{clock}}\omega_a^m(1 + C_e + C_p + C_{ml} + C_{pa})}{f_{\text{calib}}\langle\omega_p(x, y, \phi) \times M(x, y, \phi)\rangle(1 + B_k + B_q)}$$ Any time-varying phase leads to incorrect extracted ω_a $$N(t) = N_0 e^{-t/\tau} [1 + A\cos(\omega_a t + \phi(t))] \rightarrow \Delta\omega_a \approx -\frac{d\phi}{dt}$$ - Replaced damaged quad resistors in Run 2 - Significantly reduced correction and uncertainty - Run 1: 75 ppb → Run 2 aim: <20 ppb Calo acceptance depends on position → detected φ(t) ## More hardware improvements: Kickers upgrade during Run 3 ## More hardware improvements: Kicker upgrade during Run 3 Reduced coherent betatron oscillation ## More hardware improvements: Quadrupole RF in Run 5 - Apply horizontal RF field with electric quadrupoles - Damp horizontal coherent betatron oscillation ### Further reduced coherent betatron oscillation Run 1 uncertainties and corrections $$a_{\mu} \propto \frac{f_{\text{clock}}\omega_a^m(1+C_e+C_p+C_{ml}+C_{pa})}{f_{\text{calib}}\langle\omega_p(x,y,\phi)\times M(x,y,\phi)\rangle(1+B_k+B_q)}$$ ### **Quad transient correction** Mechanical vibrations in pulsed electric quadrupoles → transient magnetic field perturbation # $a_{\mu} \propto \frac{f_{\text{clock}}\omega_a^m(1 + C_e + C_p + C_{ml} + C_{pa})}{f_{\text{calib}}\langle\omega_p(x, y, \phi) \times M(x, y, \phi)\rangle(1 + B_k + B_q)}$ - Run 1 uncertainty (92 ppb): incomplete azimuth / time map - Run 2+: Extensive mapping around ring with special NMR probes + trolley; aim for <40 ppb uncertainty Run 1 uncertainties and corrections $$a_{\mu} \propto \frac{f_{\text{clock}}\omega_a^m(1+C_e+C_p+C_{ml}+C_{pa})}{f_{\text{calib}}\langle\omega_p(x,y,\phi)\times M(x,y,\phi)\rangle(1+B_k+B_q)}$$ ### **Conclusions** - Muon g-2 measured a_{μ} to 460 ppb (Run 1) \rightarrow combined 4.2 σ tension with SM - Run 2+3 data processed, analysis in progress - Expect ~2× total precision improvement with higher statistics - Many analysis and hardware efforts to reduce systematic uncertainties - Expect to achieve 100 ppb systematic uncertainty goal - Run 5 data collection finished in July 2022 - Very close to 20× BNL statistics goal! - Preparing for Run 6 to start in fall