Multi-Messenger Tomography of Earth MMTE – 2022 Workshop Goals

Sanjib Kumar Agarwalla

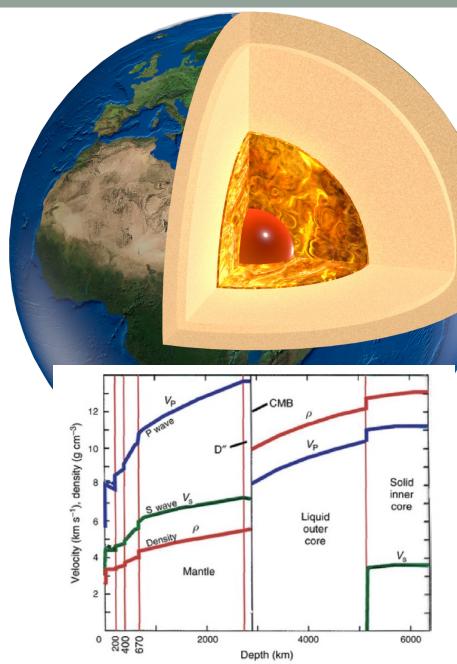
sanjib@iopb.res.in and sagarwalla@icecube.wisc.edu

Institute of Physics (IOP), Bhubaneswar, India Department of Physics and WIPAC, UW Madison, USA

WELCOME

We welcome you all to this Mini-Workshop on

"Multi-Messenger Tomography of Earth – MMTE 2022"


A Fusion of Scientists from

Neutrino and Geoscience Communities

to discuss the knowns and unknowns of our planet Earth

We wish you a very enjoyable and fruitful stay at Snowbird, Slat Lake City, Utah!

The Interior of Earth

- What lies in the interior of Earth has been a long-standing puzzle and active research is being carried out in this direction
- The regions deep below the Earth's surface are inaccessible due to large temperatures, pressures, and extreme environments.
- The information about the interior of Earth is obtained indirectly using
 - → Gravitational measurements
 - → Seismic studies
- Neutrinos can penetrate deep inside the Earth and may shed light on internal structure and composition
 - → ν oscillation tomographyw/ low-energy neutrinos
 - ν absorption tomographyw/ high-energy neutrinos

S. K. Agarwalla, MMTE 2022, Salt Lake City, Utah, USA, 30st July 2022

Multi-Messenger Tomography of Earth

Gravitational measurements exploits the gravitational interactions of matter inside Earth and provide information on Earth's total mass and moment of inertia

Geophysicists use seismic waves from earthquakes exploiting the electromagnetic interactions of matter inside Earth.

Neutrinos get attenuated at energies greater than a few TeV using weak interactions

Neutrino Absorption Tomography

Sub-GeV and multi-GeV electron neutrinos undergo charged current coherent forward scattering with ambient electrons inside deep Earth via weak interactions and this results in the modification of oscillation patterns significantly

Neutrino Oscillation Tomography

Combine neutrino data with seismic and gravitational measurements

Start a new era of Multi-Messenger Tomography of Earth This workshop is an important step along this direction!

Goal of MMTE – 2022

- The idea is to bring together leading experts from the neutrino and geoscience communities to discuss in depth the present status of the field and its future developments.
- The main aim of this workshop is to explore the role of oscillation and absorption neutrinos towards the tomography of Earth complementary to the seismic studies and gravitational measurements paving the way for multi-messenger tomography of Earth.
- The huge amount of high-precision atmospheric neutrino data that we expect to collect in the next 10 to 15 years using IceCube/IceCube-Gen2, DeepCore and its upgrade, ORCA and ARCA, Hyper-K, DUNE, and INO-ICAL with its unique muon charge identification (CID) capability, are going to play an important role towards neutrino tomography of Earth.
- These enormous amount of high-quality atmospheric neutrino data can measure the Earth's density profile.
- It may shed light on the composition [Z (atomic no.)/A (mass no.) ratio] and hydrogen content inside the Earth's core.

Organizing Committee

Bill McDonough Univ. of Maryland & Tohoku Univ.

Francis Halzen
Univ. of Wisconsin-Madison

Patrick Huber Virginia Tech

Carsten Rott Univ. of Utah & Sungkyunkwan Univ.

Hiroyuki Tanaka ERI, Univ. of Tokyo

Hiroko Watanabe Tohoku Univ.

Amol Dighe TIFR

Sanjib Kumar Agarwalla IOP, Bhubaneswar & UW Madison

Special Mention

Special thanks to Rebecca Corley for her tireless effort to organize this workshop

Scientific Program of MMTE 2022

local Utah time	Saturday July 30		Sunday July 31
0900-0915	Welcome (Carsten Rott)	0900-0945	Landscape of Neutrino Physics (Francis Halzen)
0915-0930	Workshop goals (Sanjib Kumar Agarwalla)	0945-1030	Earth's matter effect in neutrino oscillation (Sanjib Kumar Agarwalla)
0930-1015	Atmospheric Neutrinos for Non-Specialists (Edward Kearns)	1030-1100	Coffee break
1015-1100	The Internal Structure of the Earth (Bill McDonough)	1100-1125	Current understanding of the Earth's core (Francis Nimmo)
1100-1130	Coffee break	1125-1150	Neutrino tomography of the Earth: the potential of ORCA detector (Serguey Petcov)
1130-1215	Imaging the Earth's Interior using Seismic Waves (Vedran Lekic)	1150-1215	Current understanding of inner core structure and open questions (Keith D. Koper)
1215-1300	Present status and future prospects of geoneutrinos towards Earth tomography (Andrea Serafini)	1215-1240	Measuring the Earth's outer core composition using neutrino oscillations (Joao Coelho)
1300-1430	Lunch break	1240-1400	Lunch break
1430-1515	The first neutrino absorption Earth tomography (Andrea Donini)	1400-1425	An overview of the core-mantle boundary region from seismological studies (Mike Thorne)
1515-1540	Measuring density of Earth's core using high-energy neutrinos observed by loeCube (Kotoyo Hoshina)	1425-1450	Unstable structure and dynamics in Earth's deepest mantle (Mingming Li)
1540-1610	Coffee break	1450-1515	Neutrino oscillation tomography of the Earth and core composition with large water cherenkov detector (Akimichi Taketa)
1610-1655	Chemical composition and Hydrogen content inside Earth (Kei Hirose)	1515-1545	Coffee break
1655-1720	A coupled core-mantle evolution (Takashi Nakagawa)	1545-1610	Validating the Earth's Core using Atmospheric Neutrinos with ICAL at INO (Anil Kumar)
1720-1735	Oscillation tomography of Earth with Solar neutrinos and future experiments (Pouya Bakhti)	1610-1635	Superionic H-bearing iron alloys in the Earth's inner core (Wenzhong Wang)
1735-1800	Discussion (Patrick Huber and Vedran Lekic)	1635-1700	Observing the Earth's Core with Neutrino Oscillations (Rebekah Pestes)
		1700-1725	Neutrino Earth tomography in DUNE (Ivan Martinez-Soler)
		1725-1800	Discussion (Carsten Rott and Keith D. Koper)
OL :	Bullion to Continue Bulliot Habita		P-1
Chairperson	Pre-Lunch Session: Patrick Huber		Pre-Lunch Session: Carsten Rott
	Post-Lunch Session: Vedran Lekic		Post-Lunch Session: Keith D. Koper

Total 22 Talks: 9 (in-person) and 13 (virtual)
2 Discussion Sessions

Conference Proceedings and Whitepaper

There will be conference proceedings

Details are given on the webpage

We are discussing the possibility of writing a whitepaper based on the outcome of this workshop. We will discuss more on this in detail during the workshop

We need your comments/feedbacks/opinions

Your participation and contribution are needed to make this happen!

Enjoy the workshop!