The first Neutrino Absorption Earth Tomography

Andrea Donini (IFIC, Valencia)

in collaboration with S. Palomares Ruiz and J. Salvado

Nature Physics 15 (2019) 37

A seismological Earth tomography

[Dziewonski and Anderson, Physics of the Earth and Planetary Interiors, 25 (1981)]

A seismological Earth tomography

[Dziewonski and Anderson, Physics of the Earth and Planetary Interiors, 25 (1981)]

Uncertaintes from seismology

A bit on seismic waves propagation

P-waves:

Compressional waves, travel through solid and liquid media

S-waves:

Shear waves, travel only through solid medium

Difficult to extract informations about the Earth's core (source of geomagnetism)

Using neutrinos to scan the Earth

Studying the Earth's interior with neutrinos is an old idea, first mentioned in an unpublished CERN preprint:

A.Placci and E. Zavattini, submitted in Oct 1973 to Nuovo Cimento, but not published. Rejected?... never received?....

and in a talk:

L. V. Volkova and G. T. Zatsepin, Izv. Akad. Nauk. Ser. Fiz. 38N5 (1974)

MAKE A NEUTRINO BEAM! SHOOT IT THROUGH THE EARTH!

The idea was premature for the '70s!... and for the '80, the '90s, the '00s, the '10s and, probably, the '20s...

More ideas during the '80s

T. Wilson, Nature 309 (1984)

De Rújula, Glashow, Wilson, Charpak,

Phys. Rept. 99 (1983)

Using atmospheric neutrinos

Model of Primary Cosmic Ray Flux

Model of the interactions of Cosmic Rays with outer layers of the atmosphere

Atmospheric Neutrino Flux

Atmo-neutrinos are an optimal source (1)

They reach a detector from all directions

Lipari, NeuTel 2019, Venice

Atmo-neutrinos are an optimal source (2)

IceCube Collaboration, Aartsen et al , Phys. Rev. D102 (2020)

Atmo-neutrinos are an optimal source

IceCube Collaboration, Aartsen et al , Phys. Rev. D102 (2020)

Neutrino oscillations (< 1 TeV)

$$P_{ee}^{\pm} = 1 - \left(\frac{\Delta_{23}}{B_{\mp}}\right)^2 \sin^2(2\theta_{13}) \sin^2\left(\frac{B_{\mp} L}{2}\right) - \left(\frac{\Delta_{12}}{A}\right)^2 \sin^2(2\theta_{12}) \sin^2\left(\frac{A L}{2}\right)$$

Neutrino oscillations (< 1 TeV)

$$P_{ee}^{\pm} = 1 - \left(\frac{\Delta_{23}}{B_{\mp}}\right)^2 \sin^2(2\theta_{13}) \sin^2\left(\frac{B_{\mp}L}{2}\right) - \left(\frac{\Delta_{12}}{A}\right)^2 \sin^2(2\theta_{12}) \sin^2\left(\frac{AL}{2}\right)$$

See, e.g., W. Winter, Nucl. Phys. B 908 (2016) 250; Km3Net, PoS ICRC2017 (2018) 1020

Neutrino oscillations (< 1 TeV)

See, e.g., W. Winter, Nucl. Phys. B 908 (2016) 250; Km3Net, PoS ICRC2017 (2018) 1020

SEE TALKS BY BAKHTI, PETCOV, COELHO, TAKETA KUMAR, PESTES AND MARTÍNEZ-SOLER AT THIS WORKSHOP

Neutrino oscillations (< 1 TeV)

$$P_{ee}^{\pm} = 1 - \left(\frac{\Delta_{23}}{B_{\mp}}\right)^2 \sin^2(2\theta_{13}) \, \sin^2\left(\frac{B_{\mp}L}{2}\right) - \left(\frac{\Delta_{12}}{A}\right)^2 \sin^2(2\theta_{12}) \, \sin^2\left(\frac{A\,L}{2}\right)$$

See, e.g., W. Winter, Nucl. Phys. B 908 (2016) 250; Km3Net, PoS ICRC2017 (2018) 1020

Neutrino flux attenuation (> 1 TeV)

$$\frac{d\phi_{\nu}(E,\tau)}{d\tau} = -\sigma_{tot}(E)\phi_{\nu}(E,\tau)$$

Neutrino oscillations (< 1 TeV)

$$P_{ee}^{\pm} = 1 - \left(\frac{\Delta_{23}}{B_{\mp}}\right)^2 \sin^2(2\theta_{13}) \sin^2\left(\frac{B_{\mp}L}{2}\right) - \left(\frac{\Delta_{12}}{A}\right)^2 \sin^2(2\theta_{12}) \sin^2\left(\frac{AL}{2}\right)$$

See, e.g., W. Winter, Nucl. Phys. B 908 (2016) 250; Km3Net, PoS ICRC2017 (2018) 1020

Neutrino flux attenuation (> 1 TeV)

$$\frac{d\phi_{\nu}(E,\tau)}{d\tau} = -\sigma_{tot}(E)\phi_{\nu}(E,\tau)$$

Gonzalez-García, Halzen, Maltoni, Tanaka, Phys. Rev. Lett. 100 (2008)

Neutrino oscillations (< 1 TeV)

$$P_{ee}^{\pm} = 1 - \left(\frac{\Delta_{23}}{B_{\mp}}\right)^2 \sin^2(2\theta_{13}) \sin^2\left(\frac{B_{\mp}L}{2}\right) - \left(\frac{\Delta_{12}}{A}\right)^2 \sin^2(2\theta_{12}) \sin^2\left(\frac{AL}{A}\right)$$

See, e.g., W. Winter, Nucl. Phys. B 908 (2016) 250;

Neutrino flux attenuation ()

This is what we are interested in!

$$\frac{d\phi_{\nu}(E,\tau)}{d\tau} = -\sigma_{tot}(E)\phi_{\nu}(E,\tau) \quad \sigma_{tot} = \sigma_{vN}(\mathbf{X}\; \rho_{E})$$

Gonzalez-García, Halzen, Maltoni, Tanaka, Phys. Rev. Lett. 100 (2008)

The IceCube Experiment

Halzen, NeuTel 2019, Venice

The IceCube Experiment

- Deployed in glacial ice at the South Pole
- Array size I km³, 86 strings, 60 optical sensors (DOMs) per string

The IceCube IC86 data sample

- Data taking: 2011-2012
- 20145 muons
- $E_{\mu} = [400 \text{ GeV} \div 20 \text{ TeV}]$
- Good reconstruction of v energy and direction
- PUBLICLY AVAILABLE!
- 10 more years of data are not (yet) available.....

C. de los Heros, NeuTel 2019, Venice

Raw data as a function of E_{μ} and θ

From raw data to measurements

(1) Atmospheric Neutrino Flux

(2) Propagation through Earth

(3) N interaction with nucleons

(4) Detector response simulation

N_{exp}: (1) atmo-v flux model

Primary cosmic ray flux:
Honda-Gaisser model +
Gaisser-Hillas corrections
(HG-GH-H3a)

Hadronic model: QGSJET-II-04

We tried other options → "discrete" systematics

N_{exp}: (2) neutrino propagation

Propagation through the Earth with v-SQuIDs

Argüelles Delgado, Salvado & Weaver, Comput. Phys. Commun. 196 (2015)

- Neutrino Oscillations: evolution Hamiltonian in matter (dominant below 1 TeV)
- Neutrino Attenuation: inelastic CC and NC interactions with matter (dominant above 1 TeV)
- Neutrino Regeneration: v_e , $v_\mu \rightarrow v_\tau \rightarrow CC \tau \rightarrow v_e$, v_μ through leptonic decays
- Migration to lower energy bins: due to NC interactions

N_{exp}: (3) neutrino-nucleon interaction

Remember:
$$\sigma_{tot} = \sigma_{vN} \times \rho_{E}$$

Aarsten et al, Nature 551 (2017)

vN (v̄N) cross-sections at 2-3% (4-10%) errors

ICECUBE MEASUREMENT $1.30^{+0.21}_{-0.19}$ (stat) $^{+0.39}_{-0.43}$ (syst) x σ_{SM}

N_{exp}: (4) detector simulation

https://icecube.wisc.edu/science/data/IC86-sterile-neutrino

"Observed" vs "Expected with NO EARTH"

Full sample useful for normalization

For $cos\theta > -0.6$, attenuation can be as large as 50%

A five-shells Earth's model

Inner Core, one shell $L_1 = 1242 \text{ km}$

Outer Core, two shells $L_2 = 2373 \text{ km}$, $L_3 = 3504 \text{ km}$

Mantle, two shells $L_4 = 4938$ km, $L_5 = 6371$ km

No crust!

A five-shells Earth's model

Inner Core, one shell L₁ = 1242 km

Outer Core, two shells $L_2 = 2373 \text{ km}, L_3 = 3504 \text{ km}$

Mantle, two shells $L_4 = 4938 \text{ km}, L_5 = 6371 \text{ km}$

No crust!

Depths of ICB and CMB fixed!

First Earth Tomography with neutrinos

Analysis performed with MultiNest:

5 Earth layers densities

4 systematic errors:

- Flux normalization
- Pion-to-kaon ratio
- Spectral shape
- DOM Efficiency

However: (1) The Earth's mass

Gravitational measurement of the Earth's mass

$$M_{\text{earth-grav}} = (5.9724 \pm 0.0003) \times 10^{24} \text{ kg}$$

However: (1) The Earth's mass

(2) The Earth's moment of inertia

Gravitational measurement of the Earth's moment of inertia

$$I_{\text{earth-grav}} = (8.01736 \pm 0.00097) \times 10^{37} \text{ kg m}^2$$

(3) Core denser than the Mantle

First measurement of the Earth's core-mantle discontinuity using the weak force!

 $\left(\overline{\rho}_{core}^{v} - \overline{\rho}_{mantle}^{v}\right) = \left(13.1_{-6.3}^{+5.8}\right) \text{ g/cm}^{3}$

A Mantle denser than the Core has a p-value p = 0.011 !!!

2008 Claim: IceCube could reject a homogeneous Earth at 5σ in ten years

(4) The Earth's core mass

Important constraint for seismology!

Forecast with 10 years of data

1-d density profile with 10 years

1-d density profile with 10 years

MY OWN CONCLUSIONS AT THE 2019 EGU GENERAL ASSEMBLY

AN EPIPHANY:

It is eventually possible to make a neutrino tomography of the Earth: first 1-dimensional density profile (with just one year of IceCube data)! M_{earth} , I_{earth} , $\Delta \rho_{CMB}$, M_{core}

Precision will hugely increase as soon as 7 other years of IceCube data will become accessible! We hope to present the new results here NEXT YEAR!

MY CONCLUSIONS, NOW

OLD STUFF: the first 1-dimensional density profile (with one year of IceCube data) gave us: $M_{earth}, \, I_{earth}, \, \Delta \rho_{CMB}, \, M_{core}$

Donini, Palomares-Ruiz, Salvado, Nature Physics 15 (2019) 37

Hopefully, we will see a 10 times increase in statistics in next talk. Better measurements of the above observables, possibly a finer Earth's model (more shells)

WHAT NEXT?

MY CONCLUSIONS, NOW

New v-Telescopes under construction or planned: ARCA, Baikal-GVD, IceCube-Gen2....

- 1) increase in statistics will be approx. 10 times faster;
- 2) Looking from both emispheres: test of anisotropies!

By approx. 2030: 6-8 km³ optical detectors in the Southern and Northern emispheres

N

New v-Tele ARCA, Baik 1) increase 2) Looking

 $+45^{\circ}$

 $+30^{\circ}$

+15"

24h

-15'

olanned:

times faster; anisotropies!

By approx. 2030: 6-8 km³ optical detectors in the Southern and Northern emispheres

Backup slides

Backup on Geophysics

How densities are measured?

propagation of earthquake waves through the Earth: p-waves and s-waves $(v_p \text{ and } v_s)$

1) Adams-Williamson equation ('20s)

$$\frac{d\rho}{dr} = -\rho(r)\frac{g(r)}{\Phi(r)}$$

$$\Phi(r) = v_p^2 - \frac{4}{3}v_s^2$$

2) Free-oscillation modes ('90s on)

Composition dependence! Gravitational profile dependence!

Model dependence of the profile...

[Kennett, Geophysical Journal International, 132 (1998)]

Inner core uncertainties

Strong dependence of the IC density on temperature, pressure and composition

Estimated temperature range still very large: 4000-10000 K

Composition guessed (iron-nickel?)

Missing Xenon problem

Ishikawa, Tsuchiya, Tange, J. GeoPhys. Res. (Solid Earth) 119 (2014)

An input to geophysics: g(r)

The Earth's gravitational profile is needed to compute $\rho(r)$ from earthquake waves velocities

An input to geophysics: g(r)

The Earth's gravitational profile is needed to compute $\rho(r)$ from earthquake waves velocities

Complement geophysics: g(r)

The Earth's gravitational profile is needed to compute $\rho(r)$ from earthquake waves velocities

Complement geophysics: g(r)

A GOOD NEUTRINO MEASUREMENT OF g(r) COULD BE ADDED TO SEISMOLOGY AS A CONSTRAINT TO REDUCE ERRORS

ies

Backup on Forecasts and new data

Oscillation forecast

PINGU

After 10 years of data taking at PINGU or ORCA using neutrino oscillations

Winter, Nucl. Phys B908 (2016)

Oscillation forecast

Absorpion forecast

After 10 years of data taking at IceCube using neutrino attenuation

Claim: IceCube could reject a homogeneous Earth at 50 in ten years

Gonzalez-García, Halzen, Maltoni, Tanaka, Phys. Rev. Lett. 100 (2008)

New IceCube samples

Same happens with the 9.5 years IceCube sample

J. Stettner, this workshop

Possibly an upgoing events suppression

Backup on Systematics and Statistical Errors

ANALYSIS INGREDIENTS

Primary cosmic-ray spectrum

3-population models to fit cosmic-ray data

A. Fedynitch, J. B. Tjus and P. Desiati, Phys. Rev. D86:114024, 2012 Hadronic-interaction model

Models for cascade development

Neutrino flux

A. Fedynitch, J. B. Tjus and P. Desiati, Phys. Rev. D86:114024, 2012

Earth tomography with neutrinos

Sergio Palomares-Ruiz

Flux and hadronic model dependence

Flux and hadronic model dependence, 2

Flux and hadronic model dependence, 2

Earth's profile dependence

Systematics importance

- DOM efficiency
- Flux continuous parameters
 - spectral index
 - π/K ratio
 - ν/ν̄ ratio Full Implementation
- Air shower hadronic models Marginally irrelevant precise check
- Primary cosmic ray fluxes Marginally irrelevant precise check
- ▶ Hole Ice Irrelevant
- Neutrino cross sections Irrelevant
- Bulk ice scattering/absorption Irrelevant

discrete systematic

Not important

Systematics importance

- DOM efficiency
- Flux continuous parameters
 - spectral index
 - π/K ratio
 - $\nu / \bar{\nu}$ ratio Full Implementation
- Air shower hadronic models Marginally irrelevant precise check
- Primary cosmic ray fluxes Marginally irrelevant precise check
- ► Hole Ice Irrelevant
- Neutrino cross sections Irrelevant
- Bulk ice scattering/absorption Irrelevant

discrete systematic

Important

D.O.M.

Not important

Systematics importance

Impact of systematics on the error

What are the dots?

30/7/22

How to get asymmetric (bayesian) credibility intervals?

How to get asymmetric (bayesian) intervals?

Variability for different models

	Piecewise flat Earth's profile				PREM Earth's profile
	HG-GH-H3a + QGSJET-II-04	HG-GH-H3a + SIBYLL2.3	ZS + QGSJET-II-04	ZS + SIBYLL2.3	HG-GH-H3a + QGSJET-II-04
$M_\oplus^\nu [10^{24} \mathrm{kg}]$	$6.0^{+1.6}_{-1.3}$	$5.5^{+1.5}_{-1.3}$	$6.2^{+1.4}_{-1.2}$	$5.5^{+1.3}_{-1.2}$	$5.3^{+1.5}_{-1.3}$
$M_{\rm core}^{\nu} [10^{24} \mathrm{kg}]$	$2.72^{+0.97}_{-0.89}$	$2.79^{+0.98}_{-0.85}$	$3.27^{+0.92}_{-0.89}$	$2.84^{+0.89}_{-0.88}$	$2.62^{+0.97}_{-0.84}$
$I_{\oplus}^{\nu} \left[10^{37}\mathrm{kg}\mathrm{cm}^2\right]$	6.9 ± 2.4	$5.4^{+2.3}_{-1.9}$	$6.7^{+2.3}_{-2.0}$	$5.5^{+2.2}_{-1.9}$	$5.3^{+2.3}_{-1.7}$
$\bar{\rho}_{\rm core}^{\nu} - \bar{\rho}_{\rm mantle}^{\nu} \left[{\rm g/cm}^3\right]$	$13.1^{+5.8}_{-6.3}$	$14.0^{+6.0}_{-5.9}$	$15.9^{+6.0}_{-5.9}$	$13.5^{+6.1}_{-5.5}$	$12.3^{+6.3}_{-5.4}$
$p-{ m value}$ mantle denser than core	1.1×10^{-2}	2.4×10^{-3}	9.4×10^{-4}	4.6×10^{-3}	3.8×10^{-3}

Impact of constraints

Adding the gravitational Earth's mass as an external constraint, results in fixing the mantle density: $\rho_5 = [1.22\text{-}4.78] \text{ g/cm}^3 \rightarrow [4.43\text{-}4.79] \text{ g/cm}^3$

Rather small impact on the core density, instead:

 $\rho_{core} = [10.2-20.8] \text{ g/cm}^3 \rightarrow [9.7-18.6] \text{ g/cm}^3$

More on HE cross-section

Valera, Bustamante, Glaser, JHEP 06 (2022)